Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
Curr Neuropharmacol. 2013 Jan;11(1):16-29. doi: 10.2174/157015913804999504.
The neurological movement disorder dystonia is an umbrella term for a heterogeneous group of related conditions where at least 20 monogenic forms have been identified. Despite the substantial advances resulting from the identification of these loci, the function of many DYT gene products remains unclear. Comparative genomics using simple animal models to examine the evolutionarily conserved functional relationships with monogenic dystonias represents a rapid route toward a comprehensive understanding of these movement disorders. Current studies using the invertebrate animal models Caenorhabditis elegans and Drosophila melanogaster are uncovering cellular functions and mechanisms associated with mutant forms of the well-conserved gene products corresponding to DYT1, DYT5a, DYT5b, and DYT12 dystonias. Here we review recent findings from the invertebrate literature pertaining to molecular mechanisms of these gene products, torsinA, GTP cyclohydrolase I, tyrosine hydroxylase, and the alpha subunit of Na+/K ATPase, respectively. In each study, the application of powerful genetic tools developed over decades of intensive work with both of these invertebrate systems has led to mechanistic insights into these human disorders. These models are particularly amenable to large-scale genetic screens for modifiers or additional alleles, which are bolstering our understanding of the molecular functions associated with these gene products. Moreover, the use of invertebrate models for the evaluation of DYT genetic loci and their genetic interaction networks has predictive value and can provide a path forward for therapeutic intervention.
神经运动障碍性疾病——肌张力障碍是一组异质性相关疾病的统称,其中至少已确定 20 种单基因形式。尽管由于确定了这些基因座而取得了重大进展,但许多 DYT 基因产物的功能仍不清楚。利用简单的动物模型进行比较基因组学研究,以检查与单基因性肌张力障碍相关的进化上保守的功能关系,代表了全面了解这些运动障碍的快速途径。目前使用无脊椎动物模型秀丽隐杆线虫和黑腹果蝇的研究正在揭示与 DYT1、DYT5a、DYT5b 和 DYT12 肌张力障碍相关的保守基因产物的突变形式相关的细胞功能和机制。在这里,我们综述了无脊椎动物文献中关于这些基因产物(即 torsinA、GTP 环化水解酶 I、酪氨酸羟化酶和 Na+/K ATPaseα亚基)的分子机制的最新发现。在每项研究中,数十年来针对这两种无脊椎动物系统的密集工作所开发的强大遗传工具的应用,为这些人类疾病的机制提供了深入的了解。这些模型特别适合进行大规模的遗传筛选,以寻找修饰因子或其他等位基因,这增强了我们对这些基因产物相关分子功能的理解。此外,利用无脊椎动物模型评估 DYT 遗传基因座及其遗传相互作用网络具有预测价值,并为治疗干预提供了前进的道路。