Department of Angiogenesis and Cardiovascular Pathology, Max Delbrück Center for Molecular Medicine, Robert Roessle Strasse 10, D13125 Berlin, Germany.
Hypertension. 2013 Sep;62(3):592-8. doi: 10.1161/HYPERTENSIONAHA.113.01767. Epub 2013 Jul 1.
Microvascular rarefaction increases vascular resistance and pressure in systemic arteries and is a hallmark of fixed essential hypertension. Preventing rarefaction by activation of angiogenic processes could lower blood pressure. Endothelial tip cells in angiogenic sprouts direct branching of microvascular networks; the process is regulated by microRNAs, particularly the miR-30 family. We investigated the contribution of miR-30 family members in arteriolar branching morphogenesis via delta-like 4 (Dll4)-Notch signaling in a zebrafish model. The miR-30 family consists of 5 members (miR-30a-e). Loss-of-function experiments showed that only miR-30a reduced growth of intersegmental arterioles involving impaired tip cell function. Overexpression of miR-30a stimulated tip cell behavior resulting in augmented branching of intersegmental arterioles. In vitro and in vivo reporter assays showed that miR-30a directly targets the Notch ligand Dll4, a key inhibitor of tip cell formation. Coadministration of a Dll4 targeting morpholino in miR-30a morphants rescued the branching defects. Conversely, conditional overexpression of Notch intracellular domain restored arteriolar branching in miR-30a gain-of-function embryos. In human endothelial cells, loss of miR-30a increased DLL4 protein levels, activated Notch signaling as indicated in Notch reporter assays, and augmented Notch downstream effector, HEY2 and EFNB2 (ephrin-B2), expression. In spheroid assays, miR-30a loss- and gain-of-function affected tip cell behavior, consistent with miR-30a targeting Dll4. Our data suggest that miR-30a stimulates arteriolar branching by downregulating endothelial Dll4 expression, thereby controlling endothelial tip cell behavior. These findings could have relevance to the rarefaction process and, therefore, to hypertension.
微血管稀疏会增加系统性动脉的血管阻力和血压,是固定性原发性高血压的一个标志。通过激活血管生成过程来防止稀疏可能会降低血压。血管生成芽中的内皮尖端细胞指导微血管网络的分支;这个过程受到 microRNAs 的调节,特别是 miR-30 家族。我们通过在斑马鱼模型中研究 Dll4-Notch 信号通路中 miR-30 家族成员在小动脉分支形态发生中的作用来研究 miR-30 家族成员的作用。miR-30 家族由 5 个成员(miR-30a-e)组成。功能丧失实验表明,只有 miR-30a 会减少涉及尖端细胞功能受损的节间动脉生长。miR-30a 的过表达刺激了尖端细胞的行为,导致节间动脉分支增加。体外和体内报告基因检测表明,miR-30a 直接靶向 Notch 配体 Dll4,Dll4 是尖端细胞形成的关键抑制剂。在 miR-30a 突变体中共同给予 Dll4 靶向的形态发生素挽救了分支缺陷。相反,Notch 细胞内结构域的条件过表达恢复了 miR-30a 功能获得胚胎中的小动脉分支。在人内皮细胞中,miR-30a 的缺失增加了 DLL4 蛋白水平,如 Notch 报告基因检测所示,激活了 Notch 信号,并增加了 Notch 下游效应物 HEY2 和 EFNB2(ephrin-B2)的表达。在球体测定中,miR-30a 的缺失和过表达功能影响了尖端细胞的行为,这与 miR-30a 靶向 Dll4 一致。我们的数据表明,miR-30a 通过下调内皮细胞 Dll4 的表达刺激小动脉分支,从而控制内皮细胞尖端细胞的行为。这些发现可能与稀疏过程有关,因此与高血压有关。