Suppr超能文献

阿米洛利对放疗诱导多形性胶质母细胞瘤细胞增殖抑制作用的调节作用及其对凋亡基因剪接的影响。

Modulating roles of amiloride in irradiation-induced antiproliferative effects in glioblastoma multiforme cells involving Akt phosphorylation and the alternative splicing of apoptotic genes.

机构信息

Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.

出版信息

DNA Cell Biol. 2013 Sep;32(9):504-10. doi: 10.1089/dna.2013.1998. Epub 2013 Jul 3.

Abstract

Apoptosis is a key mechanism for enhanced cellular radiosensitivity in radiation therapy. Studies suggest that Akt signaling may play a role in apoptosis and radioresistance. This study evaluates the possible modulating role of amiloride, an antihypertensive agent with a modulating effect to alternative splicing for regulating apoptosis, in the antiproliferative effects induced by ionizing radiation (IR) in glioblastoma multiforme (GBM) 8401 cells. Analysis of cell viability showed that amiloride treatment significantly inhibited cell proliferation in irradiated GBM8401 cells (p<0.05) in a time-dependent manner, especially in cells treated with amiloride with IR post-treatment. In comparison with GBM8401 cells treated with amiloride alone, with GBM8401 cells treated with IR alone, and with human embryonic lung fibroblast control cells (HEL 299), GBM8401 cells treated with IR combined with amiloride showed increased overexpression of phosphorylated Akt, regardless of whether IR treatment was performed before or after amiloride administration. The alternative splicing pattern of apoptotic protease-activating factor-1 (APAF1) in cells treated with amiloride alone, IR alone, and combined amiloride-IR treatments showed more consistent cell proliferation compared to that in other apoptosis-related genes such as baculoviral IAP repeat containing 5 (BIRC5), Bcl-X, and homeodomain interacting protein kinase-3 (HIPK3). In GBM8401 cells treated with amiloride with IR post-treatment, the ratio of prosurvival (-XL,-LC) to proapoptotic (-LN,-S) splice variants of APAF1 was lower than that seen in cells treated with amiloride with IR pretreatment, suggesting that proapoptotic splice variants of APAF1 (APAF1-LN,-S) were higher in the glioblastoma cells treated with amiloride with IR post-treatment, as compared to glioblastoma cells and fibroblast control cells that had received other treatments. Together, these results suggest that amiloride modulates cell radiosensitivity involving the Akt phosphorylation and the alternative splicing of APAF1, especially for the cells treated with amiloride with IR post-treatment. Therefore, amiloride may improve the effectiveness of radiation therapy for GBMs.

摘要

细胞凋亡是放射治疗中增强细胞放射敏感性的关键机制。研究表明,Akt 信号通路可能在细胞凋亡和放射抵抗中发挥作用。本研究评估了作为一种具有调节细胞剪接功能的抗高血压药物的氨氯地平在调节多形性胶质母细胞瘤(GBM)8401 细胞中电离辐射(IR)诱导的增殖效应中的可能调节作用。细胞活力分析表明,氨氯地平处理以时间依赖性方式显著抑制照射的 GBM8401 细胞(p<0.05)的增殖,尤其是在用氨氯地平预处理后用 IR 处理的细胞中。与单独用氨氯地平处理的 GBM8401 细胞、单独用 IR 处理的 GBM8401 细胞以及人胚肺成纤维细胞对照细胞(HEL 299)相比,用 IR 联合氨氯地平处理的 GBM8401 细胞表现出磷酸化 Akt 的过度表达,无论在用氨氯地平处理之前还是之后进行 IR 处理。与其他凋亡相关基因(如凋亡蛋白酶激活因子 1(APAF1)的 baculoviral IAP 重复包含 5(BIRC5)、Bcl-X 和同源结构域相互作用蛋白激酶 3(HIPK3)相比,单独用氨氯地平处理、单独用 IR 处理以及联合氨氯地平-IR 处理的细胞中的 APAF1 的剪接模式显示出更一致的细胞增殖。在用氨氯地平预处理后用 IR 处理的 GBM8401 细胞中,存活(-XL,-LC)对促凋亡(-LN,-S)APAF1 剪接变体的比例低于在用氨氯地平预处理后用 IR 处理的细胞,表明在用氨氯地平预处理后用 IR 处理的神经胶质瘤细胞中促凋亡的 APAF1 剪接变体(APAF1-LN,-S)高于接受其他处理的神经胶质瘤细胞和成纤维细胞对照细胞。综上所述,这些结果表明,氨氯地平通过调节 Akt 磷酸化和 APAF1 的选择性剪接来调节细胞放射敏感性,特别是在用氨氯地平预处理后用 IR 处理的细胞。因此,氨氯地平可能会提高胶质母细胞瘤的放射治疗效果。

相似文献

2
Amiloride modulates alternative splicing in leukemic cells and resensitizes Bcr-AblT315I mutant cells to imatinib.
Cancer Res. 2011 Jan 15;71(2):383-92. doi: 10.1158/0008-5472.CAN-10-1037. Epub 2011 Jan 11.
3
Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells.
PLoS One. 2011;6(6):e18643. doi: 10.1371/journal.pone.0018643. Epub 2011 Jun 9.
4
MDA-7 regulates cell growth and radiosensitivity in vitro of primary (non-established) human glioma cells.
Cancer Biol Ther. 2004 Aug;3(8):739-51. doi: 10.4161/cbt.3.8.968. Epub 2004 Aug 10.
6
Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer.
J Natl Cancer Inst. 2011 Apr 20;103(8):645-61. doi: 10.1093/jnci/djr093. Epub 2011 Apr 4.
7
Rapamycin-mediated mTOR inhibition attenuates survivin and sensitizes glioblastoma cells to radiation therapy.
Acta Biochim Biophys Sin (Shanghai). 2011 Apr;43(4):292-300. doi: 10.1093/abbs/gmr012. Epub 2011 Mar 1.
9
β-elemene enhances the radiosensitivity of gastric cancer cells by inhibiting Pak1 activation.
World J Gastroenterol. 2015 Sep 14;21(34):9945-56. doi: 10.3748/wjg.v21.i34.9945.
10
Tyrphostin AG 1024 modulates radiosensitivity in human breast cancer cells.
Br J Cancer. 2001 Dec 14;85(12):2017-21. doi: 10.1054/bjoc.2001.2171.

引用本文的文献

1
ISG15 mediates the function of extracellular vesicles in promoting ovarian cancer progression and metastasis.
J Extracell Biol. 2024 Jan 31;3(2):e92. doi: 10.1002/jex2.92. eCollection 2024 Feb.
2
Epithelial sodium channels in macrophage migration and polarization: role of proinflammatory cytokines TNFα and IFNγ.
Am J Physiol Regul Integr Comp Physiol. 2022 Nov 1;323(5):R763-R775. doi: 10.1152/ajpregu.00207.2022. Epub 2022 Oct 3.
4
Defining Protein Pattern Differences Among Molecular Subtypes of Diffuse Gliomas Using Mass Spectrometry.
Mol Cell Proteomics. 2019 Oct;18(10):2029-2043. doi: 10.1074/mcp.RA119.001521. Epub 2019 Jul 28.
5
Function, clinical application, and strategies of Pre-mRNA splicing in cancer.
Cell Death Differ. 2019 Jul;26(7):1181-1194. doi: 10.1038/s41418-018-0231-3. Epub 2018 Nov 21.
6
RNA processing as an alternative route to attack glioblastoma.
Hum Genet. 2017 Sep;136(9):1129-1141. doi: 10.1007/s00439-017-1819-2. Epub 2017 Jun 12.
8
Amiloride and guggulsterone suppression of esophageal cancer cell growth in vitro and in nude mouse xenografts.
Front Biol (Beijing). 2014 Feb;9(1):75-81. doi: 10.1007/s11515-014-1289-z.

本文引用的文献

2
Necrosis is not induced by gadolinium neutron capture in glioblastoma multiforme cells.
Int J Radiat Biol. 2012 Dec;88(12):980-90. doi: 10.3109/09553002.2012.715787. Epub 2012 Sep 12.
4
TH-302, a hypoxia-activated prodrug with broad in vivo preclinical combination therapy efficacy: optimization of dosing regimens and schedules.
Cancer Chemother Pharmacol. 2012 Jun;69(6):1487-98. doi: 10.1007/s00280-012-1852-8. Epub 2012 Mar 2.
5
Involvement of p53 in gemcitabine mediated cytotoxicity and radiosensitivity in breast cancer cell lines.
Gene. 2012 May 1;498(2):300-7. doi: 10.1016/j.gene.2012.01.099. Epub 2012 Feb 14.
6
PI3K and mTOR signaling pathways in cancer: new data on targeted therapies.
Curr Oncol Rep. 2012 Apr;14(2):129-38. doi: 10.1007/s11912-012-0227-y.
7
Targeting protective autophagy exacerbates UV-triggered apoptotic cell death.
Int J Mol Sci. 2012;13(1):1209-1224. doi: 10.3390/ijms13011209. Epub 2012 Jan 20.
8
Lactate: a metabolic key player in cancer.
Cancer Res. 2011 Nov 15;71(22):6921-5. doi: 10.1158/0008-5472.CAN-11-1457.
9
Radioresistance of human glioma spheroids and expression of HSP70, p53 and EGFr.
Radiat Oncol. 2011 Nov 11;6:156. doi: 10.1186/1748-717X-6-156.
10
Acquired radioresistance of cancer and the AKT/GSK3β/cyclin D1 overexpression cycle.
J Radiat Res. 2011;52(5):539-44. doi: 10.1269/jrr.11098. Epub 2011 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验