Suppr超能文献

结构证据:单个带电残基影响细胞色素 P450 BM-3 中的底物结合。

Structural evidence: a single charged residue affects substrate binding in cytochrome P450 BM-3.

机构信息

Department of Chemistry, Columbia University , 3000 Broadway, New York, New York 10027, United States.

出版信息

Biochemistry. 2013 Oct 1;52(39):6807-15. doi: 10.1021/bi4000645. Epub 2013 Sep 16.

Abstract

Cytochrome P450 BM-3 is a bacterial enzyme with sequence similarity to mammalian P450s that catalyzes the hydroxylation of fatty acids with high efficiency. Enzyme-substrate binding and dynamics has been an important topic of study for cytochromes P450 because most of the crystal structures of substrate-bound structures show the complex in an inactive state. We have determined a new crystal structure for cytochrome P450 BM-3 in complex with N-palmitoylglycine (NPG), which unexpectedly showed a direct bidentate ion pair between NPG and arginine 47 (R47). We further explored the role of R47, the only charged residue in the binding pocket in cytochrome P450 BM-3, through mutagenesis and crystallographic studies. The mutations of R47 to glutamine (R47Q), glutamic acid (R47E), and lysine (R47K) were designed to investigate the role of its charge in binding and catalysis. The oppositely charged R47E mutation had the greatest effect on activity and binding. The crystal structure of R47E BMP shows that the glutamic acid side chain is blocking the entrance to the binding pocket, accounting for NPG's low binding affinity and charge repulsion. For R47Q and R47K BM-3, the mutations caused only a slight change in kcat and a large change in Km and Kd, which suggests that R47 mostly is involved in binding and that our crystal structure, 4KPA , represents an initial binding step in the P450 cycle.

摘要

细胞色素 P450 BM-3 是一种与哺乳动物 P450 具有序列相似性的细菌酶,能够高效催化脂肪酸的羟化。酶-底物结合和动力学一直是细胞色素 P450 研究的重要课题,因为大多数与底物结合的晶体结构显示复合物处于非活性状态。我们已经确定了细胞色素 P450 BM-3 与 N-棕榈酰甘氨酸(NPG)复合物的新晶体结构,出乎意料的是,该结构显示了 NPG 和精氨酸 47(R47)之间的直接双齿离子对。我们通过突变和晶体学研究进一步探索了 R47 的作用,R47 是细胞色素 P450 BM-3 结合口袋中唯一带电荷的残基。通过设计 R47 突变为谷氨酰胺(R47Q)、谷氨酸(R47E)和赖氨酸(R47K),研究了其电荷在结合和催化中的作用。带相反电荷的 R47E 突变对活性和结合的影响最大。R47E BMP 的晶体结构表明,谷氨酸侧链阻止了结合口袋的入口,这解释了 NPG 结合亲和力低和电荷排斥的原因。对于 R47Q 和 R47K BM-3,突变仅导致 kcat 略有变化,Km 和 Kd 变化较大,这表明 R47 主要参与结合,我们的晶体结构 4KPA 代表 P450 循环中的初始结合步骤。

相似文献

1
Structural evidence: a single charged residue affects substrate binding in cytochrome P450 BM-3.
Biochemistry. 2013 Oct 1;52(39):6807-15. doi: 10.1021/bi4000645. Epub 2013 Sep 16.
2
Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
J Mol Biol. 2007 Oct 26;373(3):633-51. doi: 10.1016/j.jmb.2007.08.015. Epub 2007 Aug 21.
3
Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium.
FEBS J. 2016 Nov;283(22):4128-4148. doi: 10.1111/febs.13911. Epub 2016 Oct 17.
4
Interactions of substrates at the surface of P450s can greatly enhance substrate potency.
Biochemistry. 2007 Dec 11;46(49):14010-7. doi: 10.1021/bi701667m. Epub 2007 Nov 16.
5
Key mutations alter the cytochrome P450 BM3 conformational landscape and remove inherent substrate bias.
J Biol Chem. 2013 Aug 30;288(35):25387-25399. doi: 10.1074/jbc.M113.479717. Epub 2013 Jul 3.
7
Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst.
Chemistry. 2000 May 2;6(9):1531-6. doi: 10.1002/(sici)1521-3765(20000502)6:9<1531::aid-chem1531>3.3.co;2-4.
8
Molecular characterization of the hydroxylase HmtN at 1.3 Å resolution.
Biochem Biophys Res Commun. 2019 Aug 27;516(3):1033-1038. doi: 10.1016/j.bbrc.2017.07.010. Epub 2017 Jul 4.
9
Biotransformation of beta-ionone by engineered cytochrome P450 BM-3.
Appl Microbiol Biotechnol. 2006 Mar;70(1):53-9. doi: 10.1007/s00253-005-0028-4. Epub 2005 Jul 7.
10
Fatty acid metabolism, conformational change, and electron transfer in cytochrome P-450(BM-3).
Biochim Biophys Acta. 1999 Nov 23;1441(2-3):141-9. doi: 10.1016/s1388-1981(99)00161-4.

引用本文的文献

2
Insights into an efficient light-driven hybrid P450 BM3 enzyme from crystallographic, spectroscopic and biochemical studies.
Biochim Biophys Acta. 2016 Dec;1864(12):1732-1738. doi: 10.1016/j.bbapap.2016.09.005. Epub 2016 Sep 14.
3
The use of reaction timecourses to determine the level of minor contaminants in enzyme preparations.
Anal Biochem. 2014 Apr 1;450:20-6. doi: 10.1016/j.ab.2013.12.031. Epub 2014 Jan 3.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
P450(BM3) (CYP102A1): connecting the dots.
Chem Soc Rev. 2012 Feb 7;41(3):1218-60. doi: 10.1039/c1cs15192d. Epub 2011 Oct 18.
3
A single active-site mutation of P450BM-3 dramatically enhances substrate binding and rate of product formation.
Biochemistry. 2011 Oct 4;50(39):8333-41. doi: 10.1021/bi201099j. Epub 2011 Sep 6.
4
Cytochrome P450: taming a wild type enzyme.
Curr Opin Biotechnol. 2011 Dec;22(6):809-17. doi: 10.1016/j.copbio.2011.02.008. Epub 2011 Mar 14.
5
Structural basis for the properties of two single-site proline mutants of CYP102A1 (P450BM3).
Chembiochem. 2010 Dec 10;11(18):2549-56. doi: 10.1002/cbic.201000421.
6
Chemoenzymatic elaboration of monosaccharides using engineered cytochrome P450BM3 demethylases.
Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16550-5. doi: 10.1073/pnas.0908954106. Epub 2009 Sep 15.
7
A panel of cytochrome P450 BM3 variants to produce drug metabolites and diversify lead compounds.
Chemistry. 2009 Nov 2;15(43):11723-9. doi: 10.1002/chem.200900643.
8
A highly active single-mutation variant of P450BM3 (CYP102A1).
Chembiochem. 2009 Jul 6;10(10):1654-6. doi: 10.1002/cbic.200900279.
9
Novel haem co-ordination variants of flavocytochrome P450BM3.
Biochem J. 2009 Jan 1;417(1):65-76. doi: 10.1042/BJ20081133.
10
Evolutionary history of a specialized p450 propane monooxygenase.
J Mol Biol. 2008 Nov 28;383(5):1069-80. doi: 10.1016/j.jmb.2008.06.060. Epub 2008 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验