Premier Oncology, Fort Myers, FL 33966, USA.
J Appl Clin Med Phys. 2013 Jul 8;14(4):4198. doi: 10.1120/jacmp.v14i4.4198.
The purpose of this study is to investigate the effectiveness of the HIPO planning and optimization algorithm for real-time prostate HDR brachytherapy. This study consists of 20 patients who underwent ultrasound-based real-time HDR brachytherapy of the prostate using the treatment planning system called Oncentra Prostate (SWIFT version 3.0). The treatment plans for all patients were optimized using inverse dose-volume histogram-based optimization followed by graphical optimization (GRO) in real time. The GRO is manual manipulation of isodose lines slice by slice. The quality of the plan heavily depends on planner expertise and experience. The data for all patients were retrieved later, and treatment plans were created and optimized using HIPO algorithm with the same set of dose constraints, number of catheters, and set of contours as in the real-time optimization algorithm. The HIPO algorithm is a hybrid because it combines both stochastic and deterministic algorithms. The stochastic algorithm, called simulated annealing, searches the optimal catheter distributions for a given set of dose objectives. The deterministic algorithm, called dose-volume histogram-based optimization (DVHO), optimizes three-dimensional dose distribution quickly by moving straight downhill once it is in the advantageous region of the search space given by the stochastic algorithm. The PTV receiving 100% of the prescription dose (V100) was 97.56% and 95.38% with GRO and HIPO, respectively. The mean dose (D(mean)) and minimum dose to 10% volume (D10) for the urethra, rectum, and bladder were all statistically lower with HIPO compared to GRO using the student pair t-test at 5% significance level. HIPO can provide treatment plans with comparable target coverage to that of GRO with a reduction in dose to the critical structures.
本研究旨在探讨 HIPO 计划和优化算法在实时前列腺 HDR 近距离治疗中的效果。本研究共纳入 20 例接受基于超声的实时 HDR 近距离治疗前列腺的患者,使用名为 Oncentra Prostate(SWIFT 版本 3.0)的治疗计划系统。所有患者的治疗计划均采用基于逆剂量-体积直方图的优化,然后实时进行图形优化(GRO)。GRO 是对等剂量线进行逐片手动操作。计划质量严重依赖于计划者的专业知识和经验。所有患者的数据均在后期检索,使用 HIPO 算法创建和优化治疗计划,该算法使用与实时优化算法相同的剂量限制、导管数量和轮廓集。HIPO 算法是一种混合算法,因为它结合了随机和确定性算法。随机算法称为模拟退火,用于搜索给定剂量目标集的最佳导管分布。确定性算法称为基于剂量-体积直方图的优化(DVHO),一旦进入随机算法给定的搜索空间的优势区域,它会快速优化三维剂量分布。接受 100%处方剂量(V100)的 PTV 分别为 GRO 和 HIPO 的 97.56%和 95.38%。与 GRO 相比,使用学生配对 t 检验,HIPO 可使尿道、直肠和膀胱的平均剂量(D(mean))和 10%体积最小剂量(D10)均统计学降低,差异有统计学意义(P<0.05)。与 GRO 相比,HIPO 可提供具有可比性的靶区覆盖的治疗计划,同时降低关键结构的剂量。