Rupasinghe Chanaka, Rukhlenko Ivan D, Premaratne Malin
Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC 3800, Australia.
Opt Express. 2013 Jul 1;21(13):15335-49. doi: 10.1364/OE.21.015335.
We model spaser as an n-level quantum system and study a spasing geometry comprising of a metal nanosphere resonantly coupled to a semiconductor quantum dot (QD). The localized surface plasmons are assumed to be generated at the nanosphere due to the energy relaxation of the optically excited electron-hole pairs inside the QD. We analyze the total system, which is formed by hybridizing spaser's electronic and plasmonic subsystems, using the density matrix formalism, and then derive an analytic expression for the plasmon excitation rate. Here, the QD with three nondegenerate states interacts with a single plasmon mode of arbitrary degeneracy with respect to angular momentum projection. The derived expression is analyzed, in order to optimize the performance of a spaser operating at the triple-degenerate dipole mode by appropriately choosing the geometric parameters of the spaser. Our method is applicable to different resonator geometries and may prove useful in the design of QD-powered spasers.
我们将受激表面等离激元辐射器(spaser)建模为一个n能级量子系统,并研究一种由与半导体量子点(QD)共振耦合的金属纳米球组成的spasing几何结构。由于量子点内光激发电子 - 空穴对的能量弛豫,假定在纳米球处产生局域表面等离激元。我们使用密度矩阵形式分析由spaser的电子和等离激元子系统杂交形成的整个系统,然后推导等离激元激发率的解析表达式。这里,具有三个非简并态的量子点与相对于角动量投影具有任意简并度的单个等离激元模式相互作用。对推导的表达式进行分析,以便通过适当选择spaser的几何参数来优化在三重简并偶极子模式下运行的spaser的性能。我们的方法适用于不同的谐振器几何结构,并且可能在量子点驱动的spaser设计中证明是有用的。