Tandoi Giuseppe, Ironside Charles N, Marsh John H, Bryce A Catrina
School of Engineering, University of Glasgow, Glasgow, UK. (
IEEE J Quantum Electron. 2012 Mar;48(3):318-327. doi: 10.1109/JQE.2011.2180365.
We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers.
我们报道了一种提高被动锁模半导体激光器输出功率的新方法。我们的方法采用了在底部包层具有光阱的外延结构,该光阱扩大了垂直模式尺寸以缩放脉冲饱和能量。通过这种方法,我们在重复频率为6.8 GHz、脉冲持续时间为0.71 ps的情况下,实现了每面9.8 W的非常高的峰值功率。特别是,我们比较了两种GaAs/AlGaAs外延层设计,一种是工作在830 nm的双量子阱设计,另一种是工作在795 nm的单量子阱设计,其垂直模式尺寸分别为0.5和0.75μm。我们表明,更大的模式尺寸不仅将锁模工作状态向更高功率方向转移,而且在限制输出功率的两个主要失效机制方面也产生了其他改进:灾难性光学镜面损伤和灾难性光学可饱和吸收体损伤。对于830 nm的材料结构,我们还研究了非吸收镜对碰撞脉冲锁模激光器输出功率和锁模工作的影响。