Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico.
Comput Biol Chem. 2013 Dec;47:24-30. doi: 10.1016/j.compbiolchem.2013.05.003. Epub 2013 Jun 20.
In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed.
在本文中,我们提出了一种计算模型,用于近似描述微生物膜生长动力学的偏微分方程的解。本工作中报道的数值技术是一种显式、非线性有限差分方法,通过牛顿法进行计算实现。我们的方案在数值上与相同偏微分方程的隐式、线性有限差分离散化进行了比较,其计算机编码需要实现稳定双共轭梯度法。我们的数值结果表明,非线性方法对所考虑的生物膜模型的解的逼近更加高效,并且需要更少的计算机内存。此外,所提出的非线性方案在实践中保留了初始轮廓的正定性。