Suppr超能文献

小信号神经模型及其应用。

Small-signal neural models and their applications.

机构信息

VIRTUS, IC Design Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798.

出版信息

IEEE Trans Biomed Circuits Syst. 2012 Feb;6(1):64-75. doi: 10.1109/TBCAS.2011.2158314.

Abstract

This paper introduces the use of the concept of small-signal analysis, commonly used in circuit design, for understanding neural models. We show that neural models, varying in complexity from Hodgkin-Huxley to integrate and fire have similar small-signal models when their corresponding differential equations are close to the same bifurcation with respect to input current. Three applications of small-signal neural models are shown. First, some of the properties of cortical neurons described by Izhikevich are explained intuitively through small-signal analysis. Second, we use small-signal models for deriving parameters for a simple neural model (such as resonate and fire) from a more complicated but biophysically relevant one like Morris-Lecar. We show similarity in the subthreshold behavior of the simple and complicated model when they are close to a Hopf bifurcation and a saddle-node bifurcation. Hence, this is useful to correctly tune simple neural models for large-scale cortical simulations. Finaly, the biasing regime of a silicon ion channel is derived by comparing its small-signal model with a Hodgkin-Huxley-type model.

摘要

本文介绍了小信号分析概念的应用,该概念通常用于电路设计,以帮助理解神经模型。我们表明,当相应的微分方程在输入电流方面接近相同的分岔时,从 Hodgkin-Huxley 到积分和点火的复杂程度不同的神经模型具有相似的小信号模型。展示了小信号神经模型的三个应用。首先,通过小信号分析直观地解释了 Izhikevich 描述的皮质神经元的一些特性。其次,我们使用小信号模型从更复杂但具有生理相关性的模型(如 Morris-Lecar)推导出简单神经模型(如谐振和点火)的参数。当它们接近 Hopf 分岔和鞍结分岔时,简单和复杂模型的亚阈值行为具有相似性。因此,这对于为大规模皮质模拟正确调整简单神经模型非常有用。最后,通过将硅离子通道的小信号模型与 Hodgkin-Huxley 型模型进行比较,推导出了其偏置状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验