Agent-Based Modelling Laboratory, York University, Toronto, Ontario M3J 1P3, Canada.
J Biol Dyn. 2013;7(1):133-47. doi: 10.1080/17513758.2013.816377.
The emergence and spread of drug resistance is one of the most challenging public health issues in the treatment of some infectious diseases. The objective of this work is to investigate whether the effect of resistance can be contained through a time-dependent treatment strategy during the epidemic subject to an isoperimetric constraint. We apply control theory to a population dynamical model of influenza infection with drug-sensitive and drug-resistant strains, and solve the associated control problem to find the optimal treatment profile that minimizes the cumulative number of infections (i.e. the epidemic final size). We consider the problem under the assumption of limited drug stockpile and show that as the size of stockpile increases, a longer delay in start of treatment is required to minimize the total number of infections. Our findings show that the amount of drugs used to minimize the total number of infections depends on the rate of de novo resistance regardless of the initial size of drug stockpile. We demonstrate that both the rate of resistance emergence and the relative transmissibility of the resistant strain play important roles in determining the optimal timing and level of treatment profile.
耐药性的出现和传播是一些传染病治疗中最具挑战性的公共卫生问题之一。本工作的目的是研究在具有等周约束的传染病情况下,通过时变治疗策略是否可以控制耐药性的影响。我们将控制理论应用于具有敏感和耐药株的流感感染的人口动力学模型,并解决相关的控制问题,以找到最小化累积感染数量(即流行后期规模)的最佳治疗方案。我们在药物库存有限的假设下考虑了这个问题,并表明随着库存规模的增加,为了最小化总感染数量,治疗开始的延迟时间需要更长。我们的研究结果表明,用于最小化总感染数量的药物量取决于新出现的耐药性的速度,而与药物库存的初始规模无关。我们证明,耐药性出现的速度和耐药株的相对传染性在确定治疗方案的最佳时间和水平方面起着重要作用。