Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
PLoS One. 2013 Jul 5;8(7):e68834. doi: 10.1371/journal.pone.0068834. Print 2013.
Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described based on short-term changes in chlorophyll fluorescence upon nutrient addition, also known as Nutrient-Induced Fluorescence Transients (NIFTs). Thus far, though, the NIFT technique was not well suited for macroalgae and seagrasses.
METHODOLOGY & PRINCIPAL FINDINGS: We developed a new experimental setup so that the NIFT technique can be used to assess nutrient limitation of benthic macroalgae and seagrasses. We first tested the applicability of the technique on sea lettuce (Ulva lactuca) cultured in the laboratory on nutrient-enriched medium without either nitrogen or phosphorus. Addition of the limiting nutrient resulted in a characteristic change in the fluorescence signal, whereas addition of non-limiting nutrients did not yield a response. Next, we applied the NIFT technique to field samples of the encrusting fan-leaf alga Lobophora variegata, one of the key algal species often involved in the degradation of coral reef ecosystems. The results pointed at co-limitation of L. variegata by phosphorus and nitrogen, although it responded more strongly to phosphate than to nitrate and ammonium addition. For turtle grass (Thalassia testudinum) we found the opposite result, with a stronger NIFT response to nitrate and ammonium than to phosphate.
CONCLUSIONS & SIGNIFICANCE: Our extension of the NIFT technique offers an easy and fast method (30-60 min per sample) to determine nutrient limitation of macroalgae and seagrasses. We successfully applied this technique to macroalgae on coral reef ecosystems and to seagrass in a tropical inner bay, and foresee wider application to other aquatic plants, and to other marine and freshwater ecosystems.
快速确定限制大型藻类和海草初级生产力的营养物质对于理解富营养化对海洋和淡水生态系统的影响至关重要。然而,目前评估营养限制的方法往往繁琐且耗时。对于浮游植物,已经描述了一种基于营养添加后叶绿素荧光短期变化的快速方法,也称为营养诱导荧光瞬变(NIFT)。不过,到目前为止,NIFT 技术并不适用于大型藻类和海草。
我们开发了一种新的实验装置,以便将 NIFT 技术用于评估底栖大型藻类和海草的营养限制。我们首先在营养丰富的培养基中测试了该技术在实验室中培养的海白菜(Ulva lactuca)的适用性,该培养基中既没有氮也没有磷。添加限制养分会导致荧光信号发生特征变化,而添加非限制养分则不会产生响应。接下来,我们将 NIFT 技术应用于附生扇叶藻(Lobophora variegata)的野外样本,该藻是经常参与珊瑚礁生态系统退化的关键藻类之一。结果表明,L. variegata 受到磷和氮的共同限制,尽管它对磷酸盐的响应比对硝酸盐和铵盐的响应更强。对于海龟草(Thalassia testudinum),我们得到了相反的结果,即硝酸盐和铵盐对 NIFT 的响应比磷酸盐更强。
我们对 NIFT 技术的扩展提供了一种简单快速的方法(每个样本 30-60 分钟)来确定大型藻类和海草的营养限制。我们成功地将该技术应用于珊瑚礁生态系统中的大型藻类和热带内湾中的海草,并预见其在其他水生植物以及其他海洋和淡水生态系统中的更广泛应用。