Suppr超能文献

带电荷纳米孔连接两个大储库中的毛细渗透。

Capillary osmosis in a charged nanopore connecting two large reservoirs.

机构信息

Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 10617.

出版信息

Langmuir. 2013 Jul 30;29(30):9598-603. doi: 10.1021/la401925n. Epub 2013 Jul 17.

Abstract

Experimental evidence revealed that the performance of nanopore-based biosensing devices can be improved by applying a salt concentration gradient. To provide a theoretical explanation for this observation and explore the mechanisms involved, we model the capillary osmosis (or diffusioosmosis) in a charged solid-state nanopore connecting two large reservoirs. The effects of nanopore geometry and the reservoir salt concentrations are examined. We show that the capillary osmotic flow is from the high salt concentration reservoir to the low salt concentration one, and its magnitude has a maximum as the reservoir salt concentrations vary. In general, the shorter the nanopore and/or the smaller its radius, the faster the osmotic flow. This flow enhances the current recognition, and the ion concentration polarization across nanopore openings raises the entity capture rate, thereby being capable of improving the performance of electrophoresis-based biosensors. The results gathered provide necessary information for designing nanopore-based biosensor devices.

摘要

实验证据表明,通过施加盐浓度梯度可以提高基于纳米孔的生物传感设备的性能。为了对这一观察结果提供理论解释并探索相关机制,我们对连接两个大储液器的带电固态纳米孔中的毛细渗透(或扩散渗透)进行建模。我们研究了纳米孔几何形状和储液器盐浓度的影响。结果表明,毛细渗透流从高盐浓度储液器流向低盐浓度储液器,并且当储液器盐浓度变化时,其幅度具有最大值。一般来说,纳米孔越短和/或半径越小,渗透流越快。这种流动增强了电流识别,并且纳米孔开口处的离子浓度极化提高了实体捕获率,从而能够提高基于电泳的生物传感器的性能。所收集的结果为设计基于纳米孔的生物传感器设备提供了必要的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验