Suppr超能文献

宫颈癌自适应放疗中 CT 图像内患者半自动化宫颈-子宫分割。

Intra-patient semi-automated segmentation of the cervix-uterus in CT-images for adaptive radiotherapy of cervical cancer.

机构信息

Department of Radiation Oncology, Erasmus-MC Daniel den Hoed Cancer Center, Rotterdam, 3008 AE, The Netherlands.

出版信息

Phys Med Biol. 2013 Aug 7;58(15):5317-32. doi: 10.1088/0031-9155/58/15/5317. Epub 2013 Jul 17.

Abstract

For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.

摘要

对于宫颈癌的在线自适应放疗,需要快速准确的图像分割来促进日常治疗的适应。我们的目的有两个:(1)测试和比较三种用于 CT 图像中宫颈-子宫结构的患者内自动分割方法,(2)通过包括关于每日膀胱体积或植入基准标记物的每日坐标的先验知识来提高分割准确性。测试的方法有:使用两种非刚性配准方法(demons 和分层算法)的形状变形(SD)和基于图谱的分割(ABAS)。对 13 名患者的 102 个 CT 扫描进行的测试表明,通过包括基于手动定义的膀胱顶部的简单 1D 模型预测的膀胱体积,分割准确性显著提高。此外,手动识别的植入基准标记物显著提高了 SD 方法的准确性。对于宫颈-子宫体积明显缩小的患者,需要使用治疗接近尾声时采集的 CT 数据来提高分割准确性。包括先验知识后,SD(Dice 相似系数 85 ± 6%,误差幅度 2.2 ± 2.3mm,平均时间约 1 分钟)和使用分层非刚性配准的 ABAS(Dice 82 ± 10%,误差幅度 3.1 ± 2.3mm,平均时间约 30 秒)的分割结果支持将其用于宫颈癌的图像引导在线自适应放疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验