Solar Fuels Laboratory, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
ACS Appl Mater Interfaces. 2013 Aug 28;5(16):8088-92. doi: 10.1021/am4021654. Epub 2013 Jul 24.
We report a new type of Au@TiO2-CdS ternary nanostructure by decorating CdS nanoparticles onto Au@TiO2 core-shell structures. In comparison to that of binary structures such as CdS-TiO2 and Au@TiO2, these ternary nanostructures exhibit a remarkably high photocatalytic H2-generation rate under visible-light irradiation. The enhanced photocatalytic activity is attributed to the unique ternary design, which builds up a transfer path for the photoexcited electrons of CdS to the core Au particles via the TiO2 nanocrystal bridge and thus effectively suppresses the electron-hole recombination on the CdS photocatalyst. This internal electron-transfer pathway (CdS → TiO2 → Au) eliminates the need for the postdeposition of the metal cocatalyst because the core Au nanoparticles can act as the interior active catalyst for proton reduction toward hydrogen evolution. We believe that our work demonstrates a promising way for the rational design of metal-semiconductor hybrid photocatalysts that can achieve a high photocatalytic efficiency for use in solar fuels production.
我们通过在 Au@TiO2 核壳结构上修饰 CdS 纳米颗粒,报道了一种新型的 Au@TiO2-CdS 三元纳米结构。与 CdS-TiO2 和 Au@TiO2 等二元结构相比,这些三元纳米结构在可见光照射下表现出显著提高的光催化 H2 生成速率。增强的光催化活性归因于独特的三元设计,它通过 TiO2 纳米晶桥为 CdS 的光激发电子建立了向核 Au 颗粒的转移途径,从而有效抑制了 CdS 光催化剂上的电子-空穴复合。这种内部电子转移途径(CdS→TiO2→Au)消除了对金属助催化剂后沉积的需求,因为核 Au 纳米颗粒可以充当质子还原为析氢的内部活性催化剂。我们相信,我们的工作为合理设计金属-半导体杂化光催化剂提供了一种有前途的方法,这种光催化剂可以实现用于太阳能燃料生产的高光催化效率。