Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA.
Neural Netw. 2013 Oct;46:283-98. doi: 10.1016/j.neunet.2013.06.008. Epub 2013 Jun 29.
Cyclic patterns of neuronal activity are ubiquitous in animal nervous systems, and partially responsible for generating and controlling rhythmic movements such as locomotion, respiration, swallowing and so on. Clarifying the role of the network connectivities for generating cyclic patterns is fundamental for understanding the generation of rhythmic movements. In this paper, the storage of binary cycles in Hopfield-type and other neural networks is investigated. We call a cycle defined by a binary matrix Σ admissible if a connectivity matrix satisfying the cycle's transition conditions exists, and if so construct it using the pseudoinverse learning rule. Our main focus is on the structural features of admissible cycles and the topology of the corresponding networks. We show that Σ is admissible if and only if its discrete Fourier transform contains exactly r=rank(Σ) nonzero columns. Based on the decomposition of the rows of Σ into disjoint subsets corresponding to loops, where a loop is defined by the set of all cyclic permutations of a row, cycles are classified as simple cycles, and separable or inseparable composite cycles. Simple cycles contain rows from one loop only, and the network topology is a feedforward chain with feedback to one neuron if the loop-vectors in Σ are cyclic permutations of each other. For special cases this topology simplifies to a ring with only one feedback. Composite cycles contain rows from at least two disjoint loops, and the neurons corresponding to the loop-vectors in Σ from the same loop are identified with a cluster. Networks constructed from separable composite cycles decompose into completely isolated clusters. For inseparable composite cycles at least two clusters are connected, and the cluster-connectivity is related to the intersections of the spaces spanned by the loop-vectors of the clusters. Simulations showing successfully retrieved cycles in continuous-time Hopfield-type networks and in networks of spiking neurons exhibiting up-down states are presented.
在动物神经系统中,神经元活动的循环模式无处不在,部分负责产生和控制节律运动,如运动、呼吸、吞咽等。阐明网络连接对于产生循环模式的作用对于理解节律运动的产生至关重要。在本文中,研究了 Hopfield 型和其他神经网络中二进制循环的存储。我们称由二进制矩阵 Σ 定义的循环是可接受的,如果存在满足循环转移条件的连接矩阵,并且如果是这样,则使用伪逆学习规则构建它。我们的主要重点是可接受循环的结构特征和相应网络的拓扑结构。我们表明,如果且仅当其离散傅里叶变换包含恰好 r=rank(Σ)个非零列时,Σ 是可接受的。基于将 Σ 的行分解为对应于环路的不相交子集,其中环路由行的所有循环排列组成,将循环分类为简单循环和可分离或不可分离的复合循环。简单循环仅包含一个环路中的行,如果 Σ 中的环路向量彼此是循环排列,则网络拓扑是具有反馈到一个神经元的前馈链。对于特殊情况,这种拓扑简化为只有一个反馈的环。复合循环包含来自至少两个不相交环路的行,并且对应于 Σ 中环路向量的神经元与一个簇相识别。由可分离复合循环构建的网络分解为完全孤立的簇。对于不可分离的复合循环,至少有两个簇是相连的,簇的连通性与簇的环路向量所张成的空间的交集有关。展示了在连续时间 Hopfield 型网络和表现出上下状态的尖峰神经元网络中成功检索到循环的模拟。