Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany.
J Comput Chem. 2013 Oct 15;34(27):2320-6. doi: 10.1002/jcc.23387. Epub 2013 Jul 19.
Germanium dioxide (GeO2 ) takes two forms at ambient pressure: a thermodynamically stable rutile-type structure and a high-temperature quartz-type polymorph. Here, we investigate the phase stability at finite temperatures by ab initio phonon and thermochemical computations. We use gradient-corrected density-functional theory (PBE-GGA) and pay particular attention to the modeling of the "semicore" germanium 3d orbitals (ascribing them either to the core or to the valence region). The phase transition is predicted correctly in both cases, and computed heat capacities and entropies are in excellent agreement with thermochemical database values. Nonetheless, the computed formation energies of α-quartz-type GeO2 (and, consequently, the predicted transition temperatures) differ significantly depending on theoretical method. Remarkably, the simpler and cheaper computational approach produces seemingly better results, not worse. In our opinion, GeO2 is a nice test case that illustrates both possibilities and limitations of modern ab initio thermochemistry.
二氧化锗(GeO2)在常压下有两种形式:热力学稳定的金红石型结构和高温石英型多晶型物。在这里,我们通过从头算声子和热化学计算来研究有限温度下的相稳定性。我们使用了梯度校正的密度泛函理论(PBE-GGA),并特别关注“半芯”锗 3d 轨道的建模(将它们归因于核心或价区)。这两种情况下都正确地预测了相转变,并且计算得到的热容和熵与热化学数据库值非常吻合。尽管如此,α-石英型 GeO2 的计算形成能(以及相应的预测转变温度)取决于理论方法,差异显著。值得注意的是,更简单、更便宜的计算方法产生了看似更好的结果,而不是更差的结果。在我们看来,GeO2 是一个很好的测试案例,它说明了现代从头算热化学的可能性和局限性。