Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0212, USA.
Cell Signal. 2013 Nov;25(11):2298-311. doi: 10.1016/j.cellsig.2013.07.006. Epub 2013 Jul 19.
Filopodia are sensors on both excitable and non-excitable cells. The sensing function is well documented in neurons and blood vessels of adult animals and is obvious during dorsal closure in embryonic development. Nerve cells extend neurites in a bidirectional fashion with growth cones at the tips where filopodia are concentrated. Their sensing of environmental cues underpins the axon's ability to "guide," bypassing non-target cells and moving toward the target to be innervated. This review focuses on the role of filopodia structure and dynamics in the detection of environmental cues, including both the extracellular matrix (ECM) and the surfaces of neighboring cells. Other protrusions including the stereocilia of the inner ear and epididymus, the invertebrate Type I mechanosensors, and the elongated processes connecting osteocytes, share certain principles of organization with the filopodia. Actin bundles, which may be inside or outside of the excitable cell, function to transduce stress from physical perturbations into ion signals. There are different ways of detecting such perturbations. Osteocyte processes contain an actin core and are physically anchored on an extracellular structure by integrins. Some Type I mechanosensors have bridge proteins that anchor microtubules to the membrane, but bundles of actin in accessory cells exert stress on this complex. Hair cells of the inner ear rely on attachments between the actin-based protrusions to activate ion channels, which then transduce signals to afferent neurons. In adherent filopodia, the focal contacts (FCs) integrated with ECM proteins through integrins may regulate integrin-coupled ion channels to achieve signal transduction. Issues that are not understood include the role of Ca(2+) influx in filopodia dynamics and how integrins coordinate or gate signals arising from perturbation of channels by environmental cues.
纤毛是可兴奋细胞和非兴奋细胞的传感器。在成年动物的神经元和血管中的传感功能已有详细记录,在胚胎发育中的背侧闭合过程中也很明显。神经细胞以双向方式延伸轴突,尖端有生长锥,其中集中了纤毛。它们对环境线索的感知是轴突“引导”能力的基础,使轴突绕过非靶细胞并向目标细胞移动以进行神经支配。本篇综述重点介绍了纤毛结构和动力学在检测环境线索中的作用,包括细胞外基质(ECM)和相邻细胞的表面。其他突起,包括内耳的毛细胞和附睾的 Stereocilia 、无脊椎动物的 I 型机械感受器以及连接骨细胞的细长过程,与纤毛具有某些组织原则。肌动蛋白束,可能位于可兴奋细胞的内部或外部,其功能是将物理扰动产生的应力转化为离子信号。有不同的方法来检测这种扰动。骨细胞的突起包含一个肌动蛋白核心,并通过整联蛋白物理锚定在细胞外结构上。一些 I 型机械感受器具有桥接蛋白,将微管锚定在膜上,但附属细胞中的肌动蛋白束对这个复合物施加应力。内耳的毛细胞依赖于突起之间的附着来激活离子通道,然后将信号转导至传入神经元。在粘附性的纤毛中,通过整联蛋白与 ECM 蛋白整合的焦点接触(FCs)可能调节整联蛋白偶联的离子通道以实现信号转导。目前尚不清楚的问题包括钙内流在纤毛动力学中的作用,以及整联蛋白如何协调或门控由环境线索对通道的扰动产生的信号。