University of Zurich, Zurich, Switzerland.
J Adhes Dent. 2013 Aug;15(4):307-10. doi: 10.3290/j.jad.a30163.
This study evaluated whether air blasting or rinsing particle remnants with water would impair adhesion of resin composite to metal.
Commercially pure titanium plates (1 mm x 25 mm x 50 mm) were wet polished down to 1200-grit silicone carbide abrasive and ultrasonically cleaned. They were then embedded in auto-polymerizing acrylic with the bonding surfaces exposed. Specimens were randomly assigned to one of the following particle deposition protocols (N = 60, n = 10 per group): group 1: particle deposition with aluminum trioxide (50 µm Al2O3) (AL) + air blasting + silane (ESPE-Sil); group 2: particle deposition with 30 µm SiO2 (CoJet) (CSC) + air blasting + silane; group 3: particle deposition with Rocatec Pre 110 µm Al2O3+Rocatec Plus 110 µm SiO2 (LSC) + air blasting + silane. In groups 4 (AL-W), 5 (CSC-W) and 6 (LSC-W), the same protocols were used, but instead of air blasting only, particle-deposited specimen surfaces were rinsed with water and air blasted. Adhesive resin (VisioBond) was applied and resin composite (Quadrant Posterior, Cavex) was bonded using polyethylene molds and photopolymerized. The specimens were then submitted to thermocycling (6000 cycles, 5°C-55°C, dwell time: 30 s, transfer time: 5 s). Pre-test failures during thermocycling were assigned a value of 0 MPa. Failure modes were identified using an optical microscope. SEM images of particles were obtained. Bond strength data (MPa) were statistically analyzed using two-way ANOVA and Tukey's post-hoc tests (a = 0.05).
Particle type significantly affected the bond results (p < 0.001). AL groups presented significantly lower results (air blasting: 4.3 ± 3.3, rinsing: 11.8 ± 6.5) compared to those of CSC (air blasting: 27.7 ± 6.6, rinsing: 30.4 ± 9.3) and LSC (air blasting: 31.4 ± 8.7, rinsing: 28.7 ± 7.0). AL groups presented 5 spontaneous debondings during thermocycling in the air-blasted group. Rinsing with water as opposed to air blasting only did not decrease the results with any of the particle types (p > 0.05). While AL groups showed exclusively adhesive failure between the resin composite and the substrate, the incidence of cohesive failures in the composite was more frequent in groups CSC and LSC after either air blasting or rinsing. SEM images of particles showed sharp morphology of the particles in AL compared to CSC and LSC.
Rinsing and air blasting following particle deposition methods did not impair adhesion of resin composite to titanium. Particle deposition with silica particles provided better adhesion of resin composite to this substrate compared to the use of alumina particles.
本研究评估了喷砂或水冲洗颗粒残余物是否会损害树脂复合材料与金属的黏附力。
商业纯钛板(1mm x 25mm x 50mm)经湿抛光至 1200 目碳化硅磨料,然后进行超声清洗。然后将它们嵌入自聚合丙烯酸树脂中,使粘结面暴露在外。将试件随机分配到以下颗粒沉积方案之一(N=60,每组 n=10):第 1 组:用三氧化二铝(50μm Al2O3)(AL)+喷砂+硅烷(ESPE-Sil)沉积颗粒;第 2 组:用 30μm SiO2(CoJet)(CSC)+喷砂+硅烷沉积颗粒;第 3 组:用 Rocatec Pre 110μm Al2O3+Rocatec Plus 110μm SiO2(LSC)+喷砂+硅烷沉积颗粒。在第 4 组(AL-W)、第 5 组(CSC-W)和第 6 组(LSC-W)中,使用了相同的方案,但与喷砂不同,仅使用水冲洗颗粒沉积的试件表面,然后进行喷砂。施加粘性树脂(VisioBond),使用聚乙烯模具和光聚合将树脂复合材料(Quadrant Posterior,Cavex)粘结。然后将试件进行热循环(6000 次循环,5°C-55°C,停留时间:30s,转移时间:5s)。热循环过程中出现的预测试失效被赋值为 0MPa。使用光学显微镜识别失效模式。获得颗粒的 SEM 图像。使用双因素方差分析和 Tukey 事后检验(a=0.05)对黏结强度数据(MPa)进行统计学分析。
颗粒类型显著影响黏结结果(p<0.001)。AL 组的结果明显较低(喷砂:4.3±3.3,冲洗:11.8±6.5),与 CSC 组(喷砂:27.7±6.6,冲洗:30.4±9.3)和 LSC 组(喷砂:31.4±8.7,冲洗:28.7±7.0)相比。AL 组在喷砂组中有 5 个试件在热循环过程中发生自发性脱粘。与仅喷砂相比,用水冲洗并没有降低任何颗粒类型的结果(p>0.05)。AL 组显示树脂复合材料与基底之间仅为黏附性失效,而 CSC 和 LSC 组在喷砂或冲洗后,复合材料中的内聚性失效更为常见。颗粒的 SEM 图像显示 AL 中的颗粒形态比 CSC 和 LSC 更尖锐。
喷砂和水冲洗颗粒沉积方法后不会损害树脂复合材料与钛的黏附力。与使用氧化铝颗粒相比,用二氧化硅颗粒沉积可提供更好的树脂复合材料与该基底的黏附力。