Suppr超能文献

核酶开关控制氨基糖苷类抗生素抗性乙酰转移酶和腺苷转移酶的诱导。

Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases.

机构信息

Key Laboratory of Molecular Medicine; the Ministry of Education; Department of Biochemistry and Molecular Biology; Fudan University Shanghai Medical College; Shanghai, PR China; Institutes of Biomedical Sciences; Fudan University Shanghai Medical College; Shanghai, PR China; School of Pharmacy; Fudan University; Pudong, Shanghai, China.

出版信息

RNA Biol. 2013 Aug;10(8):1266-73. doi: 10.4161/rna.25757. Epub 2013 Jul 15.

Abstract

The acquisition of antibiotic resistance by human pathogens poses a significant threat to public health. The mechanisms that control the proliferation and expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are a historically important class of antibiotics that were introduced in the 1940s. Aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug or enzymatic modification of the target rRNA through methylation or through the overexpression of efflux pumps. In our recent paper, we reported that expression of the aminoglycoside resistance genes encoding the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes was controlled by an aminoglycoside-sensing riboswitch RNA. This riboswitch is embedded in the leader RNA of the aac/aad genes and is associated with the integron cassette system. The leader RNA can sense and bind specific aminoglycosides such that the binding causes a structural transition in the leader RNA, which leads to the induction of aminoglycoside antibiotic resistance. Specific aminoglycosides induce reporter gene expression mediated by the leader RNA. Aminoglycoside RNA binding was measured directly and, aminoglycoside-induced changes in RNA structure monitored by chemical probing. UV cross-linking and mutational analysis identified potential aminoglycoside binding sites on the RNA.

摘要

人类病原体对抗生素耐药性的获得对公共卫生构成了重大威胁。控制抗生素耐药基因增殖和表达的机制尚未完全了解。氨基糖苷类抗生素是一类具有重要历史意义的抗生素,于 20 世纪 40 年代引入。氨基糖苷类抗生素耐药性最常见于通过药物的酶修饰或通过甲基化或通过外排泵的过表达来修饰靶 rRNA 而产生。在我们最近的一篇论文中,我们报告了编码氨基糖苷乙酰转移酶 (AAC) 和氨基糖苷腺苷转移酶 (AAD) 酶的氨基糖苷类抗生素耐药基因的表达受氨基糖苷类抗生素感应核糖开关 RNA 的控制。该核糖开关嵌入 aac/aad 基因的前导 RNA 中,并与整合子盒系统相关联。前导 RNA 可以感应和结合特定的氨基糖苷类抗生素,使得结合引起前导 RNA 的结构转变,从而诱导氨基糖苷类抗生素耐药性。特定的氨基糖苷类抗生素诱导由前导 RNA 介导的报告基因表达。直接测量了氨基糖苷 RNA 结合,并用化学探测监测了氨基糖苷诱导的 RNA 结构变化。UV 交联和突变分析确定了 RNA 上潜在的氨基糖苷结合位点。

相似文献

1
Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases.
RNA Biol. 2013 Aug;10(8):1266-73. doi: 10.4161/rna.25757. Epub 2013 Jul 15.
2
Riboswitch control of aminoglycoside antibiotic resistance.
Cell. 2013 Jan 17;152(1-2):68-81. doi: 10.1016/j.cell.2012.12.019.
3
Integron-Derived Aminoglycoside-Sensing Riboswitches Control Aminoglycoside Acetyltransferase Resistance Gene Expression.
Antimicrob Agents Chemother. 2019 May 24;63(6). doi: 10.1128/AAC.00236-19. Print 2019 Jun.
4
An aminoglycoside sensing riboswitch controls the expression of aminoglycoside resistance acetyltransferase and adenyltransferases.
Biochim Biophys Acta. 2014 Oct;1839(10):951-8. doi: 10.1016/j.bbagrm.2014.02.019. Epub 2014 Mar 12.
6
Riboswitch regulation of aminoglycoside resistance acetyl and adenyl transferases.
Cell. 2013 Jun 20;153(7):1419-20. doi: 10.1016/j.cell.2013.05.050.
7
Studies of enzymes that cause resistance to aminoglycosides antibiotics.
Methods Mol Med. 2008;142:261-71. doi: 10.1007/978-1-59745-246-5_20.
8
Studying aminoglycoside modification by the acetyltransferase class of resistance-causing enzymes via microarray.
Carbohydr Res. 2008 Nov 24;343(17):2924-31. doi: 10.1016/j.carres.2008.08.018. Epub 2008 Aug 22.
9
The expression of aminoglycoside resistance genes in integron cassettes is not controlled by riboswitches.
Nucleic Acids Res. 2022 Aug 26;50(15):8566-8579. doi: 10.1093/nar/gkac662.

引用本文的文献

1
Genome-wide identification of Kanamycin B binding RNA in Escherichia coli.
BMC Genomics. 2023 Mar 16;24(1):120. doi: 10.1186/s12864-023-09234-3.
2
Antisense-acting riboswitches: A poorly characterized yet important model of transcriptional regulation in prokaryotic organisms.
PLoS One. 2023 Feb 21;18(2):e0281744. doi: 10.1371/journal.pone.0281744. eCollection 2023.
3
Transcriptome profiling in response to Kanamycin B reveals its wider non-antibiotic cellular function in .
Front Microbiol. 2022 Nov 29;13:937827. doi: 10.3389/fmicb.2022.937827. eCollection 2022.
4
Gene rppA co-regulated by LRR, SigA, and CcpA mediates antibiotic resistance in Bacillus thuringiensis.
Appl Microbiol Biotechnol. 2022 Sep;106(17):5687-5699. doi: 10.1007/s00253-022-12090-y. Epub 2022 Jul 30.
7
Integron-Derived Aminoglycoside-Sensing Riboswitches Control Aminoglycoside Acetyltransferase Resistance Gene Expression.
Antimicrob Agents Chemother. 2019 May 24;63(6). doi: 10.1128/AAC.00236-19. Print 2019 Jun.
8
Potential and use of bacterial small RNAs to combat drug resistance: a systematic review.
Infect Drug Resist. 2017 Dec 15;10:521-532. doi: 10.2147/IDR.S148444. eCollection 2017.
9
Roles of Regulatory RNAs for Antibiotic Resistance in Bacteria and Their Potential Value as Novel Drug Targets.
Front Microbiol. 2017 May 5;8:803. doi: 10.3389/fmicb.2017.00803. eCollection 2017.
10
Genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii from Beijing, China.
Acta Pharm Sin B. 2014 Aug;4(4):295-300. doi: 10.1016/j.apsb.2014.06.004. Epub 2014 Jul 15.

本文引用的文献

1
The multifaceted roles of antibiotics and antibiotic resistance in nature.
Front Microbiol. 2013 Mar 12;4:47. doi: 10.3389/fmicb.2013.00047. eCollection 2013.
2
Riboswitch control of aminoglycoside antibiotic resistance.
Cell. 2013 Jan 17;152(1-2):68-81. doi: 10.1016/j.cell.2012.12.019.
3
A decade of riboswitches.
Cell. 2013 Jan 17;152(1-2):17-24. doi: 10.1016/j.cell.2012.12.024.
4
Widespread genetic switches and toxicity resistance proteins for fluoride.
Science. 2012 Jan 13;335(6065):233-235. doi: 10.1126/science.1215063. Epub 2011 Dec 22.
5
Prospects for riboswitch discovery and analysis.
Mol Cell. 2011 Sep 16;43(6):867-79. doi: 10.1016/j.molcel.2011.08.024.
6
Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics: a route towards multiresistance.
Antimicrob Agents Chemother. 2011 May;55(5):2438-41. doi: 10.1128/AAC.01549-10. Epub 2011 Feb 7.
8
Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity.
Nucleic Acids Res. 2011 Apr;39(8):3363-72. doi: 10.1093/nar/gkq946. Epub 2010 Dec 11.
9
The SAM-responsive S(MK) box is a reversible riboswitch.
Mol Microbiol. 2010 Dec;78(6):1393-402. doi: 10.1111/j.1365-2958.2010.07410.x. Epub 2010 Oct 18.
10
Riboswitches: structures and mechanisms.
Cold Spring Harb Perspect Biol. 2011 Jun 1;3(6):a003533. doi: 10.1101/cshperspect.a003533.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验