Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas, USA.
mBio. 2013 Jul 23;4(4):e00281-13. doi: 10.1128/mBio.00281-13.
Treatment of multidrug-resistant enterococci has become a challenging clinical problem in hospitals around the world due to the lack of reliable therapeutic options. Daptomycin (DAP), a cell membrane-targeting cationic antimicrobial lipopeptide, is the only antibiotic with in vitro bactericidal activity against vancomycin-resistant enterococci (VRE). However, the clinical use of DAP against VRE is threatened by emergence of resistance during therapy, but the mechanisms leading to DAP resistance are not fully understood. The mechanism of action of DAP involves interactions with the cell membrane in a calcium-dependent manner, mainly at the level of the bacterial septum. Previously, we demonstrated that development of DAP resistance in vancomycin-resistant Enterococcus faecalis is associated with mutations in genes encoding proteins with two main functions, (i) control of the cell envelope stress response to antibiotics and antimicrobial peptides (LiaFSR system) and (ii) cell membrane phospholipid metabolism (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase). In this work, we show that these VRE can resist DAP-elicited cell membrane damage by diverting the antibiotic away from its principal target (division septum) to other distinct cell membrane regions. DAP septal diversion by DAP-resistant E. faecalis is mediated by initial redistribution of cell membrane cardiolipin-rich microdomains associated with a single amino acid deletion within the transmembrane protein LiaF (a member of a three-component regulatory system [LiaFSR] involved in cell envelope homeostasis). Full expression of DAP resistance requires additional mutations in enzymes (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase) that alter cell membrane phospholipid content. Our findings describe a novel mechanism of bacterial resistance to cationic antimicrobial peptides.
The emergence of antibiotic resistance in bacterial pathogens is a threat to public health. Understanding the mechanisms of resistance is of crucial importance to develop new strategies to combat multidrug-resistant microorganisms. Vancomycin-resistant enterococci (VRE) are one of the most recalcitrant hospital-associated pathogens against which new therapies are urgently needed. Daptomycin (DAP) is a calcium-decorated antimicrobial lipopeptide whose target is the bacterial cell membrane. A current paradigm suggests that Gram-positive bacteria become resistant to cationic antimicrobial peptides via an electrostatic repulsion of the antibiotic molecule from a more positively charged cell surface. In this work, we provide evidence that VRE use a novel strategy to avoid DAP-elicited killing. Instead of "repelling" the antibiotic from the cell surface, VRE diverts the antibiotic molecule from the septum and "traps" it in distinct membrane regions. We provide genetic and biochemical bases responsible for the mechanism of resistance and disclose new targets for potential antimicrobial development.
由于缺乏可靠的治疗选择,治疗耐多药肠球菌已成为世界各地医院面临的一个具有挑战性的临床问题。达托霉素(DAP)是一种靶向细胞膜的阳离子抗菌脂肽,是唯一对万古霉素耐药肠球菌(VRE)具有体外杀菌活性的抗生素。然而,由于在治疗过程中出现耐药性,DAP 对 VRE 的临床应用受到威胁,但导致 DAP 耐药的机制尚不完全清楚。DAP 的作用机制涉及与细胞膜的钙依赖性相互作用,主要在细菌隔膜水平上。先前,我们证明了耐万古霉素粪肠球菌中 DAP 耐药的发展与编码具有两个主要功能的蛋白质的基因的突变有关,(i)控制抗生素和抗菌肽的细胞包膜应激反应(LiaFSR 系统)和(ii)细胞膜磷脂代谢(甘油磷酸二酯磷酸二酯酶和心磷脂合酶)。在这项工作中,我们表明,这些 VRE 可以通过将抗生素从其主要靶标(分裂隔膜)转移到其他不同的细胞膜区域来抵抗 DAP 引起的细胞膜损伤。耐 DAP 的粪肠球菌通过 DAP 分离的 DAP 易位是由与跨膜蛋白 LiaF 内单个氨基酸缺失相关的细胞膜心磷脂丰富的微区的初始再分配介导的(LiaFSR 的三个组件调节系统的成员,涉及细胞包膜动态平衡)。DAP 耐药的完全表达需要改变细胞膜磷脂含量的酶(甘油磷酸二酯磷酸二酯酶和心磷脂合酶)的额外突变。我们的发现描述了细菌对抗阳离子抗菌肽的耐药性的新机制。
细菌病原体对抗生素耐药性的出现对公共卫生构成威胁。了解耐药机制对于开发对抗多药耐药微生物的新策略至关重要。耐万古霉素肠球菌(VRE)是最顽固的医院相关病原体之一,急需新的治疗方法。达托霉素(DAP)是一种钙修饰的抗菌脂肽,其靶标是细菌细胞膜。目前的范式表明,革兰氏阳性细菌通过抗生素分子从带更多正电荷的细胞表面的静电排斥作用对阳离子抗菌肽产生耐药性。在这项工作中,我们提供了证据表明 VRE 使用一种新策略来避免 DAP 引发的杀伤。VRE 并没有“排斥”抗生素从细胞表面,而是将抗生素分子从隔膜“转移”并“捕获”在不同的膜区域。我们提供了负责耐药机制的遗传和生化基础,并披露了潜在抗菌药物开发的新靶点。