Suppr超能文献

细胞外基质在肌腱和韧带中的功能特化。

Specialisation of extracellular matrix for function in tendons and ligaments.

作者信息

Birch Helen L, Thorpe Chavaunne T, Rumian Adam P

机构信息

Institute of Orthopaedics and Musculoskeletal Science, University College London, RNOH, Brockley Hill, Stanmore, U.K.

出版信息

Muscles Ligaments Tendons J. 2013 May 21;3(1):12-22. doi: 10.11138/mltj/2013.3.1.012. Print 2013 Jan.

Abstract

Tendons and ligaments are similar structures in terms of their composition, organisation and mechanical properties. The distinction between them stems from their anatomical location; tendons form a link between muscle and bone while ligaments link bones to bones. A range of overlapping functions can be assigned to tendon and ligaments and each structure has specific mechanical properties which appear to be suited for particular in vivo function. The extracellular matrix in tendon and ligament varies in accordance with function, providing appropriate mechanical properties. The most useful framework in which to consider extracellular matrix differences therefore is that of function rather than anatomical location. In this review we discuss what is known about the relationship between functional requirements, structural properties from molecular to gross level, cellular gene expression and matrix turnover. The relevance of this information is considered by reviewing clinical aspects of tendon and ligament repair and reconstructive procedures.

摘要

就其组成、组织结构和力学性能而言,肌腱和韧带是相似的结构。它们之间的区别源于其解剖位置;肌腱在肌肉和骨骼之间形成连接,而韧带则将骨与骨相连。肌腱和韧带具有一系列重叠的功能,并且每个结构都具有特定的力学性能,这些性能似乎适合特定的体内功能。肌腱和韧带中的细胞外基质根据功能而有所不同,从而提供适当的力学性能。因此,考虑细胞外基质差异的最有用框架是功能框架,而非解剖位置框架。在本综述中,我们讨论了关于功能需求、从分子水平到宏观水平的结构特性、细胞基因表达和基质更新之间关系的已知信息。通过回顾肌腱和韧带修复及重建手术的临床方面来考量这些信息的相关性。

相似文献

1
Specialisation of extracellular matrix for function in tendons and ligaments.
Muscles Ligaments Tendons J. 2013 May 21;3(1):12-22. doi: 10.11138/mltj/2013.3.1.012. Print 2013 Jan.
4
Tendon matrix composition and turnover in relation to functional requirements.
Int J Exp Pathol. 2007 Aug;88(4):241-8. doi: 10.1111/j.1365-2613.2007.00552.x.
5
Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis.
Nat Rev Rheumatol. 2020 Apr;16(4):193-207. doi: 10.1038/s41584-019-0364-x. Epub 2020 Feb 20.
6
Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading.
Physiol Rev. 2004 Apr;84(2):649-98. doi: 10.1152/physrev.00031.2003.
7
Development and maintenance of tendons and ligaments.
Development. 2021 Apr 15;148(8). doi: 10.1242/dev.186916. Epub 2021 Apr 16.
9
Structure, physiology, and biochemistry of collagens.
Adv Exp Med Biol. 2014;802:5-29. doi: 10.1007/978-94-007-7893-1_2.
10
Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix.
Development. 2015 Dec 15;142(24):4191-204. doi: 10.1242/dev.114777.

引用本文的文献

1
Volar Radiocarpal Dislocation in a Child With Trisomy 21: A Case Report.
HSS J. 2024 May;20(2):306-309. doi: 10.1177/15563316231183346. Epub 2023 Jun 26.
3
Functions and Metabolism of Amino Acids in Bones and Joints of Cats and Dogs.
Adv Exp Med Biol. 2024;1446:155-175. doi: 10.1007/978-3-031-54192-6_7.
4
Shear wave elastography demonstrates different material properties between the medial collateral ligament and anterolateral ligament.
Clin Biomech (Bristol). 2024 Jan;111:106155. doi: 10.1016/j.clinbiomech.2023.106155. Epub 2023 Nov 25.
6
Understanding Fibroblast Heterogeneity in Form and Function.
Biomedicines. 2023 Aug 14;11(8):2264. doi: 10.3390/biomedicines11082264.
7
Effect of Pressure Conditions in Uterine Decellularization Using Hydrostatic Pressure on Structural Protein Preservation.
Bioengineering (Basel). 2023 Jul 7;10(7):814. doi: 10.3390/bioengineering10070814.
8
The aged extracellular matrix and the profibrotic role of senescence-associated secretory phenotype.
Am J Physiol Cell Physiol. 2023 Sep 1;325(3):C565-C579. doi: 10.1152/ajpcell.00124.2023. Epub 2023 Jul 24.
9
Equine tendon mechanical behaviour: Prospects for repair and regeneration applications.
Vet Med Sci. 2023 Sep;9(5):2053-2069. doi: 10.1002/vms3.1205. Epub 2023 Jul 20.

本文引用的文献

1
Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return.
Acta Biomater. 2013 Aug;9(8):7948-56. doi: 10.1016/j.actbio.2013.05.004. Epub 2013 May 10.
2
Elastic recoil can either amplify or attenuate muscle-tendon power, depending on inertial vs. fluid dynamic loading.
J Theor Biol. 2012 Nov 21;313:68-78. doi: 10.1016/j.jtbi.2012.07.033. Epub 2012 Aug 8.
3
Anterior cruciate ligament graft choices: a review of current concepts.
Open Orthop J. 2012;6:281-6. doi: 10.2174/1874325001206010281. Epub 2012 Jul 27.
4
Specialization of tendon mechanical properties results from interfascicular differences.
J R Soc Interface. 2012 Nov 7;9(76):3108-17. doi: 10.1098/rsif.2012.0362. Epub 2012 Jul 4.
5
The epidemiology of sports-related injuries in older adults: a central European epidemiologic study.
Aging Clin Exp Res. 2012 Oct;24(5):448-54. doi: 10.3275/8273. Epub 2012 Feb 21.
6
The role of mechanobiology in tendon healing.
J Shoulder Elbow Surg. 2012 Feb;21(2):228-37. doi: 10.1016/j.jse.2011.11.002.
7
Tendon biomechanics and mechanobiology--a minireview of basic concepts and recent advancements.
J Hand Ther. 2012 Apr-Jun;25(2):133-40; quiz 141. doi: 10.1016/j.jht.2011.07.004. Epub 2011 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验