Suppr超能文献

用于优化全美住院医师匹配项目中等级排序列表构建的定量实验范式:ROSS-MOORE 方法。

A quantitative experimental paradigm to optimize construction of rank order lists in the National Resident Matching Program: the ROSS-MOORE approach.

机构信息

Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA.

出版信息

Acad Med. 2013 Sep;88(9):1281-6. doi: 10.1097/ACM.0b013e31829ed3ae.

Abstract

PURPOSE

As part of the National Resident Matching Program, programs must submit a rank order list of desired applicants. Despite the importance of this process and the numerous manifest limitations with traditional approaches, minimal research has been conducted to examine the accuracy of different ranking strategies.

METHOD

The authors developed the Moore Optimized Ordinal Rank Estimator (MOORE), a novel algorithm for ranking applicants that is based on college sports ranking systems. Because it is not possible to study the Match in vivo, the authors then designed the Recruitment Outcomes Simulation System (ROSS). This program was used to simulate a series of interview seasons and to compare MOORE and traditional approaches under different conditions.

RESULTS

The accuracy of traditional ranking and the MOORE approach are equally and adversely affected with higher levels of intrarater variability. However, compared with traditional ranking methods, MOORE produces a more accurate rank order list as interrater variability increases.

CONCLUSIONS

The present data demonstrate three key findings. First, they provide proof of concept that it is possible to scientifically test the accuracy of different rank methods used in the Match. Second, they show that small amounts of variability can have a significant adverse impact on the accuracy of rank order lists. Finally, they demonstrate that an ordinal approach may lead to a more accurate rank order list in the presence of interviewer bias. The ROSS-MOORE approach offers programs a novel way to optimize the recruitment process and, potentially, to construct a more accurate rank order list.

摘要

目的

作为国家住院医师匹配计划的一部分,各专业必须提交一份理想申请人的优先选择名单。尽管这一过程非常重要,传统方法也存在诸多明显的局限性,但很少有研究来检验不同排名策略的准确性。

方法

作者开发了摩尔优化有序秩估计器(MOORE),这是一种基于大学体育排名系统的申请人排序新算法。由于无法在体内研究匹配,作者随后设计了招聘结果模拟系统(ROSS)。该程序用于模拟一系列面试季,并在不同条件下比较 MOORE 和传统方法。

结果

传统排名和 MOORE 方法的准确性都受到同一位评估者变异性增加的不利影响。然而,与传统排名方法相比,随着评估者变异性的增加,MOORE 可以产生更准确的优先选择名单。

结论

目前的数据有三个关键发现。首先,它们提供了概念验证,证明可以科学地测试匹配中使用的不同排名方法的准确性。其次,它们表明少量的变异性会对优先选择名单的准确性产生重大不利影响。最后,它们表明,在存在面试官偏见的情况下,有序方法可能会导致更准确的优先选择名单。ROSS-MOORE 方法为各专业提供了一种优化招聘流程的新方法,并可能构建更准确的优先选择名单。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验