Suppr超能文献

从微藻中绿色简便地制备用于锂离子电池的中空多孔 MnO/C 微球。

Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries.

机构信息

College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.

出版信息

ACS Nano. 2013 Aug 27;7(8):7083-92. doi: 10.1021/nn4023894. Epub 2013 Aug 1.

Abstract

Hollow porous micro/nanostructures with high surface area and shell permeability have attracted tremendous attention. Particularly, the synthesis and structural tailoring of diverse hollow porous materials is regarded as a crucial step toward the realization of high-performance electrode materials, which has several advantages including a large contact area with electrolyte, a superior structural stability, and a short transport path for Li(+) ions. Meanwhile, owing to the inexpensive, abundant, environmentally benign, and renewable biological resources provided by nature, great efforts have been devoted to understand and practice the biotemplating technology, which has been considered as an effective strategy to achieve morphology-controllable materials with structural specialty, complexity, and related unique properties. Herein, we are inspired by the natural microalgae with its special features (easy availability, biological activity, and carbon sources) to develop a green and facile biotemplating method to fabricate monodisperse MnO/C microspheres for lithium-ion batteries. Due to the unique hollow porous structure in which MnO nanoparticles were tightly embedded into a porous carbon matrix and form a penetrative shell, MnO/C microspheres exhibited high reversible specific capacity of 700 mAh g(-1) at 0.1 A g(-1), excellent cycling stability with 94% capacity retention, and enhanced rate performance of 230 mAh g(-1) at 3 A g(-1). This green, sustainable, and economical strategy will extend the scope of biotemplating synthesis for exploring other functional materials in various structure-dependent applications such as catalysis, gas sensing, and energy storage.

摘要

具有高表面积和壳渗透性的中空多孔微/纳米结构引起了极大的关注。特别是,各种中空多孔材料的合成和结构剪裁被认为是实现高性能电极材料的关键步骤,其具有几个优点,包括与电解质的大接触面积、优异的结构稳定性和 Li(+)离子的短传输路径。同时,由于自然界提供的廉价、丰富、环境友好和可再生的生物资源,人们付出了巨大的努力来理解和实践生物模板技术,这被认为是实现具有结构特殊性、复杂性和相关独特性能的可控形貌材料的有效策略。在此,我们受到具有特殊特征(易于获得、生物活性和碳源)的天然微藻的启发,开发了一种绿色简便的生物模板法来制备用于锂离子电池的单分散 MnO/C 微球。由于独特的中空多孔结构,MnO 纳米颗粒紧密嵌入多孔碳基质中并形成渗透壳,MnO/C 微球在 0.1 A g(-1)时表现出 700 mAh g(-1)的高可逆比容量、94%的容量保持率的优异循环稳定性和 230 mAh g(-1)的增强倍率性能在 3 A g(-1)时。这种绿色、可持续和经济的策略将扩展生物模板合成的范围,以探索其他功能材料在各种结构相关应用中的应用,如催化、气体传感和储能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验