Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.
Forensic Sci Int. 2013 Sep 10;231(1-3):61-72. doi: 10.1016/j.forsciint.2013.04.023. Epub 2013 May 17.
Copy-move forgery is one of the most popular tampering artifacts in digital images. In this paper, we present an efficient method for copy-move forgery detection using Multiresolution Local Binary Patterns (MLBP). The proposed method is robust to geometric distortions and illumination variations of duplicated regions. Furthermore, the proposed block-based method recovers parameters of the geometric transformations. First, the image is divided into overlapping blocks and feature vectors for each block are extracted using LBP operators. The feature vectors are sorted based on lexicographical order. Duplicated image blocks are determined in the block matching step using k-d tree for more time reduction. Finally, in order to both determine the parameters of geometric transformations and remove the possible false matches, RANSAC (RANdom SAmple Consensus) algorithm is used. Experimental results show that the proposed approach is able to precisely detect duplicated regions even after distortions such as rotation, scaling, JPEG compression, blurring and noise adding.
复制-移动篡改是数字图像中最常见的篡改痕迹之一。在本文中,我们提出了一种使用多分辨率局部二值模式(MLBP)进行复制-移动篡改检测的有效方法。所提出的方法对复制区域的几何变形和光照变化具有鲁棒性。此外,所提出的基于块的方法可以恢复几何变换的参数。首先,将图像划分为重叠块,并使用 LBP 算子提取每个块的特征向量。根据字典顺序对特征向量进行排序。在块匹配步骤中,使用 k-d 树确定重复的图像块,以进一步减少时间消耗。最后,为了确定几何变换的参数并消除可能的误匹配,使用 RANSAC(RANdom SAmple Consensus)算法。实验结果表明,即使在旋转、缩放、JPEG 压缩、模糊和添加噪声等失真后,所提出的方法也能够精确地检测到重复区域。