Department of Chemical Engineering and CRC for Contamination Assessment and Remediation of the Environment (CRC-CARE), Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
J Colloid Interface Sci. 2013 Oct 1;407:467-73. doi: 10.1016/j.jcis.2013.06.061. Epub 2013 Jul 9.
Spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles were prepared, characterized, and tested in degradation of aqueous phenol in the presence of peroxymonosulfate. It was found that Mn3O4 and Co3O4 nanoparticles are highly effective in heterogeneous activation of peroxymonosulfate to produce sulfate radicals for phenol degradation. The activity shows an order of Mn3O4>Co3O4>Fe3O4. Mn3O4 could fast and completely remove phenol in about 20 min, at the conditions of 25 ppm phenol, 0.4 g/L catalyst, 2 g/L oxone®, and 25 °C. A pseudo first order model would fit to phenol degradation kinetics and activation energies on Mn3O4 and Co3O4 were obtained as 38.5 and 66.2 kJ/mol, respectively. In addition, Mn3O4 exhibited excellent catalytic stability in several runs, demonstrating that Mn3O4 is a promising catalyst alternative to toxic Co3O4 for water treatment.
尖晶石结构的 Mn3O4、Co3O4 和 Fe3O4 纳米粒子被制备、表征,并在过一硫酸盐存在下用于降解水溶液中的苯酚。研究发现,Mn3O4 和 Co3O4 纳米粒子在异相活化过一硫酸盐生成硫酸根自由基方面对苯酚降解具有很高的活性。其活性顺序为 Mn3O4>Co3O4>Fe3O4。在 25 ppm 苯酚、0.4 g/L 催化剂、2 g/L Oxone®和 25°C 的条件下,Mn3O4 可在约 20 min 内快速完全去除苯酚。苯酚降解动力学符合拟一级模型,在 Mn3O4 和 Co3O4 上获得的表观活化能分别为 38.5 和 66.2 kJ/mol。此外,Mn3O4 在几次运行中表现出优异的催化稳定性,表明 Mn3O4 是一种有前途的催化剂替代有毒的 Co3O4 用于水处理。