Suppr超能文献

以JmjD2d去甲基化酶作为模型系统,通过多路复用展示RapidFire质谱的通量增强。

Demonstrating enhanced throughput of RapidFire mass spectrometry through multiplexing using the JmjD2d demethylase as a model system.

作者信息

Leveridge Melanie, Buxton Rachel, Argyrou Argyrides, Francis Peter, Leavens Bill, West Andy, Rees Mike, Hardwicke Philip, Bridges Angela, Ratcliffe Steven, Chung Chun-wa

机构信息

1Department of Screening and Compound Profiling, GlaxoSmithKline, Stevenage, UK.

出版信息

J Biomol Screen. 2014 Feb;19(2):278-86. doi: 10.1177/1087057113496276. Epub 2013 Jul 29.

Abstract

Using mass spectrometry to detect enzymatic activity offers several advantages over fluorescence-based methods. Automation of sample handling and analysis using platforms such as the RapidFire (Agilent Technologies, Lexington, MA) has made these assays amenable to medium-throughput screening (of the order of 100,000 wells). However, true high-throughput screens (HTS) of large compound collections (>1 million) are still considered too time-consuming to be feasible. Here we propose a simple multiplexing strategy that can be used to increase the throughput of RapidFire, making it viable for HTS. The method relies on the ability to analyze pooled samples from several reactions simultaneously and to deconvolute their origin using "mass-tagged" substrates. Using the JmjD2d H3K9me3 demethylase as a model system, we demonstrate the practicality of this method to achieve a 4-fold increase in throughput. This was achieved without any loss of assay quality. This multiplex strategy could easily be scaled to give even greater reductions in analysis time.

摘要

与基于荧光的方法相比,使用质谱法检测酶活性具有多个优势。使用诸如RapidFire(安捷伦科技公司,马萨诸塞州列克星敦)等平台实现样品处理和分析的自动化,使得这些检测适用于中等通量筛选(约100,000个孔)。然而,对大型化合物库(超过100万个)进行真正的高通量筛选(HTS)仍被认为耗时过长而不可行。在此,我们提出一种简单的多重分析策略,可用于提高RapidFire的通量,使其适用于高通量筛选。该方法依赖于同时分析来自多个反应的混合样品并使用“质量标记”底物解卷积其来源的能力。以JmjD2d H3K9me3去甲基化酶作为模型系统,我们证明了该方法在实现通量提高4倍方面的实用性。这一过程中检测质量没有任何损失。这种多重分析策略可以轻松扩展,以进一步减少分析时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验