Suppr超能文献

膜/脂筏与细胞骨架的相互作用:对信号传导和功能的影响:膜/脂筏,细胞骨架排列和细胞信号传导的介质

Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling.

作者信息

Head Brian P, Patel Hemal H, Insel Paul A

机构信息

VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA; Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA.

Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

Biochim Biophys Acta. 2014 Feb;1838(2):532-45. doi: 10.1016/j.bbamem.2013.07.018. Epub 2013 Jul 27.

Abstract

The plasma membrane in eukaryotic cells contains microdomains that are enriched in certain glycosphingolipids, gangliosides, and sterols (such as cholesterol) to form membrane/lipid rafts (MLR). These regions exist as caveolae, morphologically observable flask-like invaginations, or as a less easily detectable planar form. MLR are scaffolds for many molecular entities, including signaling receptors and ion channels that communicate extracellular stimuli to the intracellular milieu. Much evidence indicates that this organization and/or the clustering of MLR into more active signaling platforms depends upon interactions with and dynamic rearrangement of the cytoskeleton. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to MLR and help regulate lateral diffusion of membrane proteins and lipids in response to extracellular events (e.g., receptor activation, shear stress, electrical conductance, and nutrient demand). MLR regulate cellular polarity, adherence to the extracellular matrix, signaling events (including ones that affect growth and migration), and are sites of cellular entry of certain pathogens, toxins and nanoparticles. The dynamic interaction between MLR and the underlying cytoskeleton thus regulates many facets of the function of eukaryotic cells and their adaptation to changing environments. Here, we review general features of MLR and caveolae and their role in several aspects of cellular function, including polarity of endothelial and epithelial cells, cell migration, mechanotransduction, lymphocyte activation, neuronal growth and signaling, and a variety of disease settings. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.

摘要

真核细胞中的质膜含有富含某些糖鞘脂、神经节苷脂和固醇(如胆固醇)的微结构域,以形成膜/脂筏(MLR)。这些区域以小窝形式存在,即形态上可观察到的烧瓶状内陷,或以较难检测到的平面形式存在。MLR是许多分子实体的支架,包括将细胞外刺激传递到细胞内环境的信号受体和离子通道。许多证据表明,这种组织和/或将MLR聚集到更活跃的信号平台取决于与细胞骨架的相互作用和动态重排。几种细胞骨架成分和结合伴侣,以及调节细胞骨架的酶,定位于MLR,并有助于调节膜蛋白和脂质响应细胞外事件(如受体激活、剪切应力、电导和营养需求)的侧向扩散。MLR调节细胞极性、对细胞外基质的粘附、信号事件(包括影响生长和迁移的事件),并且是某些病原体、毒素和纳米颗粒进入细胞的部位。因此,MLR与潜在细胞骨架之间的动态相互作用调节了真核细胞功能的许多方面及其对不断变化环境的适应。在这里,我们综述了MLR和小窝的一般特征及其在细胞功能的几个方面的作用,包括内皮细胞和上皮细胞的极性、细胞迁移、机械转导、淋巴细胞激活、神经元生长和信号传导,以及各种疾病情况。本文是名为:细胞骨架与膜通道、受体和转运体之间的相互影响的特刊的一部分。客座编辑:让·克洛德·埃尔韦。

相似文献

2
Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components.
J Biol Chem. 2006 Sep 8;281(36):26391-9. doi: 10.1074/jbc.M602577200. Epub 2006 Jul 3.
3
Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes.
J Biol Chem. 2004 May 7;279(19):19846-53. doi: 10.1074/jbc.M313440200. Epub 2004 Mar 8.
5
Redistribution of glycolipid raft domain components induces insulin-mimetic signaling in rat adipocytes.
Mol Cell Biol. 2001 Jul;21(14):4553-67. doi: 10.1128/MCB.21.14.4553-4567.2001.
6
Lipid rafts and caveolae and their role in compartmentation of redox signaling.
Antioxid Redox Signal. 2009 Jun;11(6):1357-72. doi: 10.1089/ars.2008.2365.
8
The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.
Biochim Biophys Acta. 2014 Feb;1838(2):557-68. doi: 10.1016/j.bbamem.2013.07.009. Epub 2013 Jul 13.
10
Lipid rafts/caveolae as microdomains of calcium signaling.
Cell Calcium. 2009 Jun;45(6):625-33. doi: 10.1016/j.ceca.2009.02.009. Epub 2009 Mar 25.

引用本文的文献

2
A New GlyT2 Variant Associated with Hyperekplexia.
Int J Mol Sci. 2025 Jul 14;26(14):6753. doi: 10.3390/ijms26146753.
3
Synergy between membrane topography and domains to control signaling protein localization in mast cells facilitates their activation.
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2424427122. doi: 10.1073/pnas.2424427122. Epub 2025 Jul 17.
4
Role of membrane microdomains in cardiac protection: strategies for diabetic cardiomyopathy.
Am J Physiol Heart Circ Physiol. 2025 Aug 1;329(2):H572-H591. doi: 10.1152/ajpheart.00139.2025. Epub 2025 Jul 10.
5
6
Amyloid β-Induced Inflammarafts in Alzheimer's Disease.
Int J Mol Sci. 2025 May 10;26(10):4592. doi: 10.3390/ijms26104592.
7
Acid sphingomyelinase recruits palmitoylated CD36 to membrane rafts and enhances lipid uptake.
J Biol Chem. 2025 May 8;301(6):110213. doi: 10.1016/j.jbc.2025.110213.
9
Caveolae: Metabolic Platforms at the Crossroads of Health and Disease.
Int J Mol Sci. 2025 Mar 24;26(7):2918. doi: 10.3390/ijms26072918.
10
SNX19 Interacts with Caveolin-1 and Flotillin-1 to Regulate DR Endocytosis and Signaling.
Biomedicines. 2025 Feb 15;13(2):481. doi: 10.3390/biomedicines13020481.

本文引用的文献

1
Genotype-induced changes in biophysical properties of frontal cortex lipid raft from APP/PS1 transgenic mice.
Front Physiol. 2012 Nov 27;3:454. doi: 10.3389/fphys.2012.00454. eCollection 2012.
2
β-arrestin 2 regulates Aβ generation and γ-secretase activity in Alzheimer's disease.
Nat Med. 2013 Jan;19(1):43-9. doi: 10.1038/nm.3023. Epub 2012 Dec 2.
3
Sphingolipids: regulators of crosstalk between apoptosis and autophagy.
J Lipid Res. 2013 Jan;54(1):5-19. doi: 10.1194/jlr.R031278. Epub 2012 Nov 13.
4
Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3463-72. doi: 10.1073/pnas.1210373109. Epub 2012 Nov 14.
5
TRPV4 and the regulation of vascular tone.
J Cardiovasc Pharmacol. 2013 Feb;61(2):113-9. doi: 10.1097/FJC.0b013e318279ba42.
6
Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor nanoclustering.
J Biol Chem. 2012 Dec 14;287(51):42664-74. doi: 10.1074/jbc.M112.386045. Epub 2012 Oct 22.
7
Characterization of the molecular architecture of human caveolin-3 and interaction with the skeletal muscle ryanodine receptor.
J Biol Chem. 2012 Nov 23;287(48):40302-16. doi: 10.1074/jbc.M112.377085. Epub 2012 Oct 15.
10
Membrane raft disruption results in neuritic retraction prior to neuronal death in cortical neurons.
Biosci Trends. 2012 Aug;6(4):183-91. doi: 10.5582/bst.2012.v6.4.183.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验