Department of Physics and Astronomy, 115 South 1400 East, The University of Utah, Salt Lake City, UT 84112-0830, USA.
Adv Mater. 2013 Aug 7;25(29):3948-56. doi: 10.1002/adma.201300604. Epub 2013 Jun 12.
Molecular self-assembly constitutes a versatile strategy for creating functional structures on surfaces. Tuning the subtle balance between intermolecular and molecule-surface interactions allows structure formation to be tailored at the single-molecule level. While metal surfaces usually exhibit interaction strengths in an energy range that favors molecular self-assembly, dielectric surfaces having low surface energies often lack sufficient interactions with adsorbed molecules. As a consequence, application-relevant, bulk insulating materials pose significant challenges when considering them as supporting substrates for molecular self-assembly. Here, the current status of molecular self-assembly on surfaces of wide-bandgap dielectric crystals, investigated under ultrahigh vacuum conditions at room temperature, is reviewed. To address the major issues currently limiting the applicability of molecular self-assembly principles in the case of dielectric surfaces, a systematic discussion of general strategies is provided for anchoring organic molecules to bulk insulating materials.
分子自组装是在表面上构建功能结构的一种通用策略。调整分子间和分子-表面相互作用的微妙平衡,可以在单分子水平上对结构形成进行定制。虽然金属表面通常表现出在能量范围内有利于分子自组装的相互作用强度,但具有低表面能的介电表面往往与吸附分子缺乏足够的相互作用。因此,在考虑将相关应用的、块状绝缘材料作为分子自组装的支撑衬底时,它们会带来重大的挑战。在这里,综述了在室温的超高真空条件下对宽带隙介电晶体表面上的分子自组装的研究现状。为了解决目前限制介电表面上分子自组装原理适用性的主要问题,系统地讨论了将有机分子固定到块状绝缘材料上的一般策略。