Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran.
J Clin Neurophysiol. 2013 Aug;30(4):362-70. doi: 10.1097/WNP.0b013e31829dda4b.
Seizure onset detection with minimum latency has a key role in improving the therapy studies of epilepsy. In this article, an epileptic seizure onset detection algorithm based on general tensor discriminant analysis is proposed to detect the seizure through EEG signals with smallest delay before the development of clinical symptoms. In this algorithm, seizure and nonseizure EEG signal epochs are exhibited by spectral, spatial, and temporal domains (third-order tensors) in wavelet decomposition. Then, to reduce feature space, projection matrices are extracted from tensor-represented EEG signal by general tensor discriminant analysis. In this strategy, the discriminative information in the training tensors is preserved that it is a benefit in comparison with common feature space reduction algorithms such as principal component analysis and multilinear subspace analysis. The proposed seizure onset detection algorithm is evaluated on 44 epileptic patients from 2 standard datasets and recognizes 98% of seizures with average delay of 4.5 seconds. The obtained results show efficiency and effectiveness of our proposed algorithm in comparison with other algorithms.
潜伏期最短的癫痫发作起始检测在改善癫痫治疗研究方面具有关键作用。本文提出了一种基于广义张量判别分析的癫痫发作起始检测算法,通过 EEG 信号在出现临床症状之前以最小的延迟来检测癫痫发作。在该算法中,癫痫发作和非癫痫发作 EEG 信号通过小波分解在谱域、空域和时域(三阶张量)中展示。然后,通过广义张量判别分析从张量表示的 EEG 信号中提取投影矩阵。在这种策略中,保留了训练张量中的判别信息,与主成分分析和多线性子空间分析等常见特征空间降维算法相比,这是一个优势。所提出的癫痫发作起始检测算法在来自 2 个标准数据集的 44 名癫痫患者上进行了评估,平均延迟 4.5 秒即可识别 98%的癫痫发作。与其他算法相比,所获得的结果表明了我们提出的算法的效率和有效性。