Pharmascience Inc., Montreal, Quebec, Canada.
J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Sep 1;934:117-23. doi: 10.1016/j.jchromb.2013.07.007. Epub 2013 Jul 17.
Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore, examples are given as how to evaluate the linearity over the entire concentration range when only two concentration levels are used for linear regression. To conclude, two-concentration linear regression is accurate and robust enough for routine use in regulated LC-MS bioanalysis and it significantly saves time and cost as well.
线性校准通常使用调节 LC-MS 生物分析中的 8 到 10 个校准浓度水平来进行,因为监管指南中规定了至少 6 个浓度水平。然而,我们之前曾报道过,双浓度线性校准与使用多个浓度一样可靠,甚至更好。本研究的目的是通过对在独立监管生物分析实验室进行的多个生物分析项目的回顾性数据分析,比较双浓度与多浓度线性校准。共随机选择了 12 个生物分析项目:每种最常用的三种样品提取方法(蛋白沉淀、液液萃取、固相萃取)各有两个验证和两个研究。当仅使用最低和最高浓度水平对现有数据进行回顾性线性回归时,没有观察到额外的批处理失败/QC 拒绝,并且原始多浓度回归和新的双浓度线性回归之间的准确性和精密度差异可以忽略不计。具体而言,验证和研究的总平均表观偏差(个体偏差平方的平方根)差异分别在-0.3%至 0.7%和 0.1%至 0.7%的范围内。验证和研究的 QC 浓度平均值差异分别在-0.6%至 1.8%和-0.8%至 2.5%的范围内。验证和研究的%CV 差异分别在-0.7%至 0.9%和-0.3%至 0.6%的范围内。研究样本浓度的平均差异在-0.8%至 2.3%的范围内。使用双浓度线性回归,每个批次可节省 13%的时间和成本,每个项目的先导时间可节省 53%(工作标准溶液的制备、加标和等分)。此外,还举例说明了如何在仅使用两个浓度水平进行线性回归时评估整个浓度范围内的线性度。总之,双浓度线性回归足够准确和稳健,可常规用于调节 LC-MS 生物分析,并且可以显著节省时间和成本。