Suppr超能文献

在临床环境中对决策支持规则交互进行建模。

Modeling decision support rule interactions in a clinical setting.

作者信息

Sordo Margarita, Rocha Beatriz H, Morales Alfredo A, Maviglia Saverio M, Oglio Elisa Dell'Oglio, Fairbanks Amanda, Aroy Teal, Dubois David, Bouyer-Ferullo Sharon, Rocha Roberto A

机构信息

Clinical Informatics Research and Development, Partners Healthcare, Boston, MA, USA.

出版信息

Stud Health Technol Inform. 2013;192:908-12.

Abstract

Traditionally, rule interactions are handled at implementation time through rule task properties that control the order in which rules are executed. By doing so, knowledge about the behavior and interactions of decision rules is not captured at modeling time. We argue that this is important knowledge that should be integrated in the modeling phase. In this project, we build upon current work on a conceptual schema to represent clinical knowledge for decision support in the form of if then rules. This schema currently captures provenance of the clinical content, context where such content is actionable (i.e. constraints) and the logic of the rule itself. For this project, we borrowed concepts from both the Semantic Web (i.e., Ontologies) and Complex Adaptive Systems (CAS), to explore a conceptual approach for modeling rule interactions in an enterprise-wide clinical setting. We expect that a more comprehensive modeling will facilitate knowledge authoring, editing and update; foster consistency in rules implementation and maintenance; and develop authoritative knowledge repositories to promote quality, safety and efficacy of healthcare.

摘要

传统上,规则交互是在实现时通过控制规则执行顺序的规则任务属性来处理的。通过这种方式,关于决策规则行为和交互的知识在建模时并未被捕获。我们认为这是应在建模阶段加以整合的重要知识。在本项目中,我们基于当前关于概念模式的工作,以“如果<公式></公式>那么”规则的形式表示用于决策支持的临床知识。该模式目前捕获临床内容的出处、此类内容可操作的上下文(即约束)以及规则本身的逻辑。对于本项目,我们借鉴了语义网(即本体)和复杂适应系统(CAS)的概念,以探索一种在企业级临床环境中对规则交互进行建模的概念方法。我们期望更全面的建模将促进知识创作、编辑和更新;促进规则实施和维护的一致性;并开发权威的知识库以提高医疗保健的质量、安全性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验