Suppr超能文献

Impact of variations in anonymous record linkage on weight distribution and classification.

作者信息

Nasseh Daniel, Stausberg Jürgen

机构信息

IBE, Ludwig-Maximilians-Universität München, Germany.

出版信息

Stud Health Technol Inform. 2013;192:922.

Abstract

Anonymous or privacy preserving record linkage is the term for systems allowing the linkage of data from different sources while maintaining an individual's anonymity. This work displays the impact of variations in the process of generating weights in a probabilistic record linkage system on different datasets, the resulting set of weights of candidate pairs and consequently on the final classification process. Furthermore, the results give insight into general problems of current unsupervised classification methods.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验