Department of Surgery, University of Medicine and Dentistry of New Jersey, Clinical Academic Building, 125 Patterson Street, New Brunswick, NJ 08901, USA.
Comput Biol Med. 2013 Sep;43(9):1154-66. doi: 10.1016/j.compbiomed.2013.05.018. Epub 2013 Jun 6.
Early detection of coronary artery disease (CAD) using the acoustic approach, a noninvasive and cost-effective method, would greatly improve the outcome of CAD patients. To detect CAD, we analyze diastolic sounds for possible CAD murmurs. We observed diastolic sounds to exhibit 1/f structure and developed a new method, path length entropy (PLE) and a scaled version (SPLE), to characterize this structure to improve CAD detection. We compare SPLE results to Hurst exponent, Sample entropy and Multiscale entropy for distinguishing between normal and CAD patients. SPLE achieved a sensitivity-specificity of 80%-81%, the best of the tested methods. However, PLE and SPLE are not sufficient to prove nonlinearity, and evaluation using surrogate data suggests that our cardiovascular sound recordings do not contain significant nonlinear properties.
利用声学方法(一种无创且具有成本效益的方法)早期检测冠状动脉疾病(CAD),将极大地改善 CAD 患者的预后。为了检测 CAD,我们分析舒张期声音以寻找可能的 CAD 杂音。我们观察到舒张期声音表现出 1/f 结构,并开发了一种新方法,即路径长度熵(PLE)和一种缩放版本(SPLE),以对这种结构进行特征描述,从而提高 CAD 检测的准确性。我们将 SPLE 结果与 Hurst 指数、样本熵和多尺度熵进行比较,以区分正常人和 CAD 患者。SPLE 实现了 80%-81%的灵敏度-特异性,是测试方法中最好的。然而,PLE 和 SPLE 不足以证明非线性,使用替代数据的评估表明,我们的心血管声音记录不包含显著的非线性特性。