Suppr超能文献

施万细胞生物学

Biology of Schwann cells.

作者信息

Kidd Grahame J, Ohno Nobuhiko, Trapp Bruce D

机构信息

Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

出版信息

Handb Clin Neurol. 2013;115:55-79. doi: 10.1016/B978-0-444-52902-2.00005-9.

Abstract

The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate.

摘要

施万细胞在周围神经形成和再生过程中的基本作用已被认识超过100年,但整合施万细胞和轴突功能的细胞和分子机制仍在不断阐明。施万细胞起源于胚胎神经嵴,可分化为髓鞘形成细胞或将多条无髓鞘轴突束成Remak纤维。轴突决定施万细胞遵循哪种分化路径,最近的研究表明,通过施万细胞上的ErbB2/B3受体进行的轴突神经调节蛋白1信号传导对于施万细胞髓鞘形成至关重要。由特定整合素和营养不良聚糖复合物介导的细胞外基质产生和相互作用也是施万细胞与轴突相互作用的关键条件。髓鞘形成需要施万细胞质膜在毫米级距离上进行扩张和特化。许多髓鞘特异性蛋白已被鉴定,对髓鞘基因的转基因操作提供了对髓鞘蛋白功能的新见解,包括维持轴突完整性和存活。促进髓鞘形成的细胞事件,包括基于微管的蛋白质和mRNA靶向以及基于肌动蛋白的运动,也已开始被理解。然而,可以说,施万细胞生物学最显著的方面是它们对轴突损伤的强烈反应。髓鞘降解、去分化、分裂、轴突营养因子的产生和髓鞘再生都支撑着施万细胞和周围神经强大的再生能力。中枢神经系统纤维由少突胶质细胞髓鞘化,许多这些特性并非中枢神经系统纤维所共有。剖析负责施万细胞复杂生物学的分子机制不仅在确定施万细胞特异性疾病而且在轴突退化的其他疾病的新治疗靶点方面继续具有实际益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验