Suppr超能文献

订书钉α-螺旋肽药物研发:一种用于 p53 依赖性癌症治疗的强效 MDM2 和 MDMX 双重抑制剂。

Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy.

机构信息

Aileron Therapeutics, Inc., Cambridge, MA 02139, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3445-54. doi: 10.1073/pnas.1303002110. Epub 2013 Aug 14.

Abstract

Stapled α-helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action. A high resolution (1.7-Å) X-ray crystal structure reveals its molecular interactions with the target protein MDMX, including multiple contacts with key amino acids as well as a role for the hydrocarbon staple itself in target engagement. Most importantly, ATSP-7041 demonstrates robust p53-dependent tumor growth suppression in MDM2/MDMX-overexpressing xenograft cancer models, with a high correlation to on-target pharmacodynamic activity, and possesses favorable pharmacokinetic and tissue distribution properties. Overall, ATSP-7041 demonstrates in vitro and in vivo proof-of-concept that stapled peptides can be developed as therapeutically relevant inhibitors of protein-protein interaction and may offer a viable modality for cancer therapy.

摘要

订书钉 α-螺旋肽已成为治疗多种治疗靶点的一种很有前途的新方法。在这里,我们报告了一种有效的 MDM2 和 MDMX 的双重抑制剂 ATSP-7041,它可以在体外和体内有效地激活肿瘤中的 p53 通路。具体而言,ATSP-7041 以纳摩尔亲和力结合 MDM2 和 MDMX,在存在血清的情况下,在癌细胞系中表现出亚微摩尔的细胞活性,并表现出高度特异性的、针对目标的作用机制。高分辨率(1.7-Å)X 射线晶体结构揭示了其与靶蛋白 MDMX 的分子相互作用,包括与关键氨基酸的多个接触以及烃钉本身在靶标结合中的作用。最重要的是,ATSP-7041 在 MDM2/MDMX 过表达的异种移植癌症模型中表现出强大的依赖于 p53 的肿瘤生长抑制作用,与靶标药效学活性高度相关,并具有良好的药代动力学和组织分布特性。总体而言,ATSP-7041 在体外和体内证明了订书钉肽可以作为治疗相关的蛋白质-蛋白质相互作用抑制剂进行开发,并且可能为癌症治疗提供一种可行的方法。

相似文献

1
Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3445-54. doi: 10.1073/pnas.1303002110. Epub 2013 Aug 14.
2
Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX.
Cancer Res. 2007 Sep 15;67(18):8810-7. doi: 10.1158/0008-5472.CAN-07-1140.
5
Design, Synthesis, and Biological Evaluation of Lysine-Stapled Peptide Inhibitors of p53-MDM2/MDMX Interactions with Potent Antitumor Activity .
J Med Chem. 2024 Oct 10;67(19):17893-17904. doi: 10.1021/acs.jmedchem.4c01939. Epub 2024 Sep 19.
6
High affinity interaction of the p53 peptide-analogue with human Mdm2 and Mdmx.
Cell Cycle. 2009 Apr 15;8(8):1176-84. doi: 10.4161/cc.8.8.8185. Epub 2009 Apr 16.
7
Designing dual inhibitors of Mdm2/MdmX: Unexpected coupling of water with gatekeeper Y100/99.
Proteins. 2017 Aug;85(8):1493-1506. doi: 10.1002/prot.25310. Epub 2017 May 16.
8
Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4665-70. doi: 10.1073/pnas.0900947106. Epub 2009 Mar 2.
9
Design of stapled peptide-based PROTACs for MDM2/MDMX atypical degradation and tumor suppression.
Theranostics. 2022 Sep 11;12(15):6665-6681. doi: 10.7150/thno.75444. eCollection 2022.
10
Systematic mutational analysis of peptide inhibition of the p53-MDM2/MDMX interactions.
J Mol Biol. 2010 Apr 30;398(2):200-13. doi: 10.1016/j.jmb.2010.03.005. Epub 2010 Mar 10.

引用本文的文献

3
Advances in Peptidomimetics for Next-Generation Therapeutics: Strategies, Modifications, and Applications.
Chem Rev. 2025 Aug 13;125(15):7099-7166. doi: 10.1021/acs.chemrev.4c00989. Epub 2025 Jul 23.
4
Unlocking the potential of tumor-targeting peptides in precision oncology.
Oncol Res. 2025 Jun 26;33(7):1547-1570. doi: 10.32604/or.2025.062197. eCollection 2025.
5
From Concepts to Inhibitors: A Blueprint for Targeting Protein-Protein Interactions.
Chem Rev. 2025 Jul 23;125(14):6819-6869. doi: 10.1021/acs.chemrev.5c00046. Epub 2025 Jun 24.
6
Cyclic peptide structure prediction and design using AlphaFold2.
Nat Commun. 2025 May 21;16(1):4730. doi: 10.1038/s41467-025-59940-7.
7
-Designed APC/C Inhibitors Provide a Rationale for Targeting RING-Type E3 Ubiquitin Ligases.
J Med Chem. 2025 Jun 12;68(11):11468-11483. doi: 10.1021/acs.jmedchem.5c00416. Epub 2025 May 21.
8
Reengineering of a Proteomimetic Pan-Ras Inhibitor into a Ras Degrader.
Angew Chem Int Ed Engl. 2025 Jul 21;64(30):e202507092. doi: 10.1002/anie.202507092. Epub 2025 May 30.
9
Molecular Modelling in Bioactive Peptide Discovery and Characterisation.
Biomolecules. 2025 Apr 3;15(4):524. doi: 10.3390/biom15040524.
10

本文引用的文献

2
MDM4 is a key therapeutic target in cutaneous melanoma.
Nat Med. 2012 Aug;18(8):1239-47. doi: 10.1038/nm.2863. Epub 2012 Jul 22.
3
Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization.
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11788-93. doi: 10.1073/pnas.1203789109. Epub 2012 Jun 28.
4
Structure of the stapled p53 peptide bound to Mdm2.
J Am Chem Soc. 2012 Jan 11;134(1):103-6. doi: 10.1021/ja2090367. Epub 2011 Dec 14.
5
An orthosteric inhibitor of the Ras-Sos interaction.
Nat Chem Biol. 2011 Jul 17;7(9):585-7. doi: 10.1038/nchembio.612.
6
Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis.
Nat Protoc. 2011 Jun;6(6):761-71. doi: 10.1038/nprot.2011.324. Epub 2011 May 12.
7
Design and structure of stapled peptides binding to estrogen receptors.
J Am Chem Soc. 2011 Jun 29;133(25):9696-9. doi: 10.1021/ja202946k. Epub 2011 Jun 6.
8
Overview of the CCP4 suite and current developments.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.
9
MDM2 and MDMX in cancer and development.
Curr Top Dev Biol. 2011;94:45-75. doi: 10.1016/B978-0-12-380916-2.00003-6.
10
A stapled p53 helix overcomes HDMX-mediated suppression of p53.
Cancer Cell. 2010 Nov 16;18(5):411-22. doi: 10.1016/j.ccr.2010.10.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验