Machine Vision and Pattern Recognition Laboratory, Department of Mathematics and Physics, Lappeenranta University of Technology, Skinnarilankatu 34, Lappeenranta, Finland.
Comput Math Methods Med. 2013;2013:368514. doi: 10.1155/2013/368514. Epub 2013 Jun 19.
We address the performance evaluation practices for developing medical image analysis methods, in particular, how to establish and share databases of medical images with verified ground truth and solid evaluation protocols. Such databases support the development of better algorithms, execution of profound method comparisons, and, consequently, technology transfer from research laboratories to clinical practice. For this purpose, we propose a framework consisting of reusable methods and tools for the laborious task of constructing a benchmark database. We provide a software tool for medical image annotation helping to collect class label, spatial span, and expert's confidence on lesions and a method to appropriately combine the manual segmentations from multiple experts. The tool and all necessary functionality for method evaluation are provided as public software packages. As a case study, we utilized the framework and tools to establish the DiaRetDB1 V2.1 database for benchmarking diabetic retinopathy detection algorithms. The database contains a set of retinal images, ground truth based on information from multiple experts, and a baseline algorithm for the detection of retinopathy lesions.
我们讨论了开发医学图像分析方法的性能评估实践,特别是如何建立和共享具有验证的真实数据和可靠评估协议的医学图像数据库。这样的数据库支持更好的算法的开发、深刻的方法比较的执行,并且最终将研究实验室的技术转移到临床实践中。为此,我们提出了一个由可重复使用的方法和工具组成的框架,用于构建基准数据库这一繁琐的任务。我们提供了一个用于医学图像注释的软件工具,帮助收集病变的类别标签、空间跨度和专家置信度,以及一种适当组合来自多个专家的手动分割的方法。该工具和用于方法评估的所有必要功能都作为公共软件包提供。作为一个案例研究,我们利用该框架和工具建立了 DiaRetDB1 V2.1 数据库,用于基准测试糖尿病视网膜病变检测算法。该数据库包含一组视网膜图像、基于多个专家信息的真实数据以及用于检测视网膜病变的基线算法。