Suppr超能文献

构建医学图像分析的基准数据库和协议:糖尿病视网膜病变。

Constructing benchmark databases and protocols for medical image analysis: diabetic retinopathy.

机构信息

Machine Vision and Pattern Recognition Laboratory, Department of Mathematics and Physics, Lappeenranta University of Technology, Skinnarilankatu 34, Lappeenranta, Finland.

出版信息

Comput Math Methods Med. 2013;2013:368514. doi: 10.1155/2013/368514. Epub 2013 Jun 19.

Abstract

We address the performance evaluation practices for developing medical image analysis methods, in particular, how to establish and share databases of medical images with verified ground truth and solid evaluation protocols. Such databases support the development of better algorithms, execution of profound method comparisons, and, consequently, technology transfer from research laboratories to clinical practice. For this purpose, we propose a framework consisting of reusable methods and tools for the laborious task of constructing a benchmark database. We provide a software tool for medical image annotation helping to collect class label, spatial span, and expert's confidence on lesions and a method to appropriately combine the manual segmentations from multiple experts. The tool and all necessary functionality for method evaluation are provided as public software packages. As a case study, we utilized the framework and tools to establish the DiaRetDB1 V2.1 database for benchmarking diabetic retinopathy detection algorithms. The database contains a set of retinal images, ground truth based on information from multiple experts, and a baseline algorithm for the detection of retinopathy lesions.

摘要

我们讨论了开发医学图像分析方法的性能评估实践,特别是如何建立和共享具有验证的真实数据和可靠评估协议的医学图像数据库。这样的数据库支持更好的算法的开发、深刻的方法比较的执行,并且最终将研究实验室的技术转移到临床实践中。为此,我们提出了一个由可重复使用的方法和工具组成的框架,用于构建基准数据库这一繁琐的任务。我们提供了一个用于医学图像注释的软件工具,帮助收集病变的类别标签、空间跨度和专家置信度,以及一种适当组合来自多个专家的手动分割的方法。该工具和用于方法评估的所有必要功能都作为公共软件包提供。作为一个案例研究,我们利用该框架和工具建立了 DiaRetDB1 V2.1 数据库,用于基准测试糖尿病视网膜病变检测算法。该数据库包含一组视网膜图像、基于多个专家信息的真实数据以及用于检测视网膜病变的基线算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fa0/3703800/c9b7c950092e/CMMM2013-368514.001.jpg

相似文献

1
Constructing benchmark databases and protocols for medical image analysis: diabetic retinopathy.
Comput Math Methods Med. 2013;2013:368514. doi: 10.1155/2013/368514. Epub 2013 Jun 19.
2
Construction of benchmark retinal image database for diabetic retinopathy analysis.
Proc Inst Mech Eng H. 2020 Sep;234(9):1036-1048. doi: 10.1177/0954411920938569. Epub 2020 Jul 1.
3
A decision support system for automatic screening of non-proliferative diabetic retinopathy.
J Med Syst. 2011 Feb;35(1):17-24. doi: 10.1007/s10916-009-9337-y. Epub 2009 Jul 4.
4
Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques.
Comput Math Methods Med. 2016;2016:6814791. doi: 10.1155/2016/6814791. Epub 2016 Mar 27.
5
A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images.
Comput Med Imaging Graph. 2015 Sep;44:41-53. doi: 10.1016/j.compmedimag.2015.07.001. Epub 2015 Jul 14.
6
Algorithms for digital image processing in diabetic retinopathy.
Comput Med Imaging Graph. 2009 Dec;33(8):608-22. doi: 10.1016/j.compmedimag.2009.06.003. Epub 2009 Jul 18.
8
Automated Identification of Diabetic Retinopathy Using Deep Learning.
Ophthalmology. 2017 Jul;124(7):962-969. doi: 10.1016/j.ophtha.2017.02.008. Epub 2017 Mar 27.
9
Points of interest and visual dictionaries for automatic retinal lesion detection.
IEEE Trans Biomed Eng. 2012 Aug;59(8):2244-53. doi: 10.1109/TBME.2012.2201717. Epub 2012 May 30.
10
Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach.
Comput Biol Med. 2010 Feb;40(2):124-37. doi: 10.1016/j.compbiomed.2009.11.009. Epub 2009 Dec 31.

引用本文的文献

1
Trends and hotspots in the field of diabetic retinopathy imaging research from 2000-2023.
Front Med (Lausanne). 2024 Oct 9;11:1481088. doi: 10.3389/fmed.2024.1481088. eCollection 2024.
2
Artificial Intelligence Applications in Diabetic Retinopathy: What We Have Now and What to Expect in the Future.
Endocrinol Metab (Seoul). 2024 Jun;39(3):416-424. doi: 10.3803/EnM.2023.1913. Epub 2024 Jun 10.
3
The RETA Benchmark for Retinal Vascular Tree Analysis.
Sci Data. 2022 Jul 11;9(1):397. doi: 10.1038/s41597-022-01507-y.
4
Artificial Intelligence Algorithms in Diabetic Retinopathy Screening.
Curr Diab Rep. 2022 Jun;22(6):267-274. doi: 10.1007/s11892-022-01467-y. Epub 2022 Apr 19.
5
Detection of Microaneurysms in Fundus Images Based on an Attention Mechanism.
Genes (Basel). 2019 Oct 17;10(10):817. doi: 10.3390/genes10100817.
6
Simulation and Synthesis in Medical Imaging.
IEEE Trans Med Imaging. 2018 Mar;37(3):673-679. doi: 10.1109/TMI.2018.2800298.
7
Retinal Microaneurysms Detection Using Gradient Vector Analysis and Class Imbalance Classification.
PLoS One. 2016 Aug 26;11(8):e0161556. doi: 10.1371/journal.pone.0161556. eCollection 2016.
8
A novel image recuperation approach for diagnosing and ranking retinopathy disease level using diabetic fundus image.
PLoS One. 2015 May 14;10(5):e0125542. doi: 10.1371/journal.pone.0125542. eCollection 2015.
9
Diagnosing and ranking retinopathy disease level using diabetic fundus image recuperation approach.
ScientificWorldJournal. 2015;2015:534045. doi: 10.1155/2015/534045. Epub 2015 Apr 7.

本文引用的文献

1
Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs.
IEEE Trans Med Imaging. 2010 Jan;29(1):185-95. doi: 10.1109/TMI.2009.2033909. Epub 2009 Oct 9.
2
REVIEW - a reference data set for retinal vessel profiles.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2262-5. doi: 10.1109/IEMBS.2008.4649647.
3
Quantitative analysis of multi-spectral fundus images.
Med Image Anal. 2006 Aug;10(4):578-97. doi: 10.1016/j.media.2006.05.007. Epub 2006 Jul 24.
4
The use of receiver operating characteristic curves in biomedical informatics.
J Biomed Inform. 2005 Oct;38(5):404-15. doi: 10.1016/j.jbi.2005.02.008. Epub 2005 Apr 2.
6
Ridge-based vessel segmentation in color images of the retina.
IEEE Trans Med Imaging. 2004 Apr;23(4):501-9. doi: 10.1109/TMI.2004.825627.
7
Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels.
IEEE Trans Med Imaging. 2003 Aug;22(8):951-8. doi: 10.1109/TMI.2003.815900.
8
Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response.
IEEE Trans Med Imaging. 2000 Mar;19(3):203-10. doi: 10.1109/42.845178.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验