Suppr超能文献

以无进展生存期作为区间删失的事件发生时间终点的统计问题综述。

A review of statistical issues with progression-free survival as an interval-censored time-to-event endpoint.

作者信息

Sun Xing, Li Xiaoyun, Chen Cong, Song Yang

机构信息

Merck & Co., Merck Research Labs, North Wales, Pennsylvania 19454, USA.

出版信息

J Biopharm Stat. 2013;23(5):986-1003. doi: 10.1080/10543406.2013.813524.

Abstract

Frequent rise of interval-censored time-to-event data in randomized clinical trials (e.g., progression-free survival [PFS] in oncology) challenges statistical researchers in the pharmaceutical industry in various ways. These challenges exist in both trial design and data analysis. Conventional statistical methods treating intervals as fixed points, which are generally practiced by pharmaceutical industry, sometimes yield inferior or even flawed analysis results in extreme cases for interval-censored data. In this article, we examine the limitation of these standard methods under typical clinical trial settings and further review and compare several existing nonparametric likelihood-based methods for interval-censored data, methods that are more sophisticated but robust. Trial design issues involved with interval-censored data comprise another topic to be explored in this article. Unlike right-censored survival data, expected sample size or power for a trial with interval-censored data relies heavily on the parametric distribution of the baseline survival function as well as the frequency of assessments. There can be substantial power loss in trials with interval-censored data if the assessments are very infrequent. Such an additional dependency controverts many fundamental assumptions and principles in conventional survival trial designs, especially the group sequential design (e.g., the concept of information fraction). In this article, we discuss these fundamental changes and available tools to work around their impacts. Although progression-free survival is often used as a discussion point in the article, the general conclusions are equally applicable to other interval-censored time-to-event endpoints.

摘要

在随机临床试验中,区间删失的事件发生时间数据频繁出现(例如肿瘤学中的无进展生存期[PFS]),这在诸多方面给制药行业的统计研究人员带来了挑战。这些挑战在试验设计和数据分析中均存在。制药行业通常采用的将区间视为固定点的传统统计方法,在处理区间删失数据的极端情况下,有时会得出较差甚至有缺陷的分析结果。在本文中,我们研究了这些标准方法在典型临床试验设置下的局限性,并进一步回顾和比较了几种现有的基于非参数似然的区间删失数据方法,这些方法更为复杂但稳健。区间删失数据所涉及的试验设计问题是本文要探讨的另一个主题。与右删失生存数据不同,区间删失数据试验的预期样本量或检验效能在很大程度上依赖于基线生存函数的参数分布以及评估的频率。如果评估非常不频繁,区间删失数据试验可能会有相当大的效能损失。这种额外的依赖性与传统生存试验设计中的许多基本假设和原则相矛盾,尤其是成组序贯设计(例如信息分数的概念)。在本文中,我们讨论了这些根本性变化以及应对其影响的可用工具。尽管无进展生存期在本文中常被用作讨论点,但一般结论同样适用于其他区间删失的事件发生时间终点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验