From the Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405.
J Biol Chem. 2013 Sep 27;288(39):28312-23. doi: 10.1074/jbc.M113.466045. Epub 2013 Aug 19.
G-proteins, kinesins, and myosins are hydrolases that utilize a common protein fold and divalent metal cofactor (typically Mg(2+)) to coordinate purine nucleotide hydrolysis. The nucleoside triphosphorylase activities of these enzymes are activated through allosteric communication between the nucleotide-binding site and the activator/effector/polymer interface to convert the free energy of nucleotide hydrolysis into molecular switching (G-proteins) or force generation (kinesins and myosin). We have investigated the ATPase mechanisms of wild-type and the S237C mutant of non-muscle myosin II motor from Dictyostelium discoideum. The S237C substitution occurs in the conserved metal-interacting switch-1, and we show that this substitution modulates the actomyosin interaction based on the divalent metal present in solution. Surprisingly, S237C shows rapid basal steady-state Mg(2+)- or Mn(2+)-ATPase kinetics, but upon binding actin, its MgATPase is inhibited. This actin inhibition is relieved by Mn(2+), providing a direct and experimentally reversible linkage of switch-1 and the actin-binding cleft through the swapping of divalent metals in the reaction. Using pyrenyl-labeled F-actin, we demonstrate that acto·S237C undergoes slow and weak MgATP binding, which limits the rate of steady-state catalysis. Mn(2+) rescues this effect to near wild-type activity. 2'(3')-O-(N-Methylanthraniloyl)-ADP release experiments show the need for switch-1 interaction with the metal cofactor for tight ADP binding. Our results are consistent with strong reciprocal coupling of nucleoside triphosphate and F-actin binding and provide additional evidence for the allosteric communication pathway between the nucleotide-binding site and the filament-binding region.
G 蛋白、驱动蛋白和肌球蛋白都是利用共同的蛋白质折叠和二价金属辅因子(通常是 Mg(2+))来协调嘌呤核苷酸水解的水解酶。这些酶的核苷三磷酸酶活性通过核苷酸结合位点和激活剂/效应物/聚合物界面之间的变构通讯来激活,将核苷酸水解的自由能转化为分子开关(G 蛋白)或力生成(驱动蛋白和肌球蛋白)。我们研究了来自盘基网柄菌的非肌肉肌球蛋白 II 马达的野生型和 S237C 突变体的 ATP 酶机制。S237C 取代发生在保守的金属相互作用开关 1 中,我们表明该取代基于溶液中存在的二价金属来调节肌球蛋白与肌动蛋白的相互作用。令人惊讶的是,S237C 显示出快速的基础稳态 Mg(2+)或 Mn(2+)-ATP 酶动力学,但结合肌动蛋白后,其 MgATP 酶被抑制。这种肌动蛋白抑制通过 Mn(2+)得到缓解,通过在反应中交换二价金属,直接且实验上可逆地连接开关 1 和肌动蛋白结合裂隙。使用芘基标记的 F-肌动蛋白,我们证明了 acto·S237C 经历缓慢且弱的 MgATP 结合,这限制了稳态催化的速率。Mn(2+) 挽救了这种效应,使其接近野生型活性。2'(3')-O-(N-甲基邻氨基苯甲酸酰基)-ADP 释放实验表明开关 1 与金属辅因子相互作用对于紧密 ADP 结合是必需的。我们的结果与核苷三磷酸和 F-肌动蛋白结合的强相互偶联一致,并为核苷酸结合位点和丝状结合区域之间的变构通讯途径提供了额外的证据。