Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
Dalton Trans. 2013 Oct 28;42(40):14411-23. doi: 10.1039/c3dt51700d.
The mechanisms of oxidation of ethylene by manganese-oxo complexes of the type MnO3L (L = O(-), Cl, CH3, OCH3, Cp, NPH3) have been explored on the singlet, doublet, triplet and quartet potential energy surfaces at the B3LYP/LACVP* level of theory and the results discussed and compared with those of the technetium and rhenium oxo complexes we reported earlier, thereby drawing group trends in the reactions of this important class of oxidation catalysts. In the reactions of MnO3L (L = O(-), Cl(-), CH3, OCH3, Cp, NPH3) with ethylene, it was found that the formation of the dioxylate intermediate along the concerted [3 + 2] addition pathway on the singlet potential energy is favored kinetically and thermodynamically over its formation by a two-step process via the metallaoxetane by [2 + 2] addition. The activation barriers for the formation of the dioxylate and the product stabilities on the singlet PES for the ligands studied are found to follow the order: NPH3 < Cl(-) < CH3O(-) < Cp < O(-) < CH3. On the doublet PES, the activation barriers for the formation of the dioxylate intermediate for the ligands are found to follow the order: CH3O(-) < Cl(-) < Cp < CH3 while the order of product stabilities is: Cl(-) < CH3O(-) < Cp < CH3. The order of dioxylate product stabilities on the triplet surface for the ligands studied is: Cl(-) < CH3O(-) < Cp < CH3 < NPH3 < O(-) and the order on the quartet surface is O(-) < Cp < CH3 < NPH3 < Cl(-) < CH3O(-). The re-arrangement of the metallaoxetane intermediate to the dioxylate is not a feasible reaction for all the ligands studied. Of the group VII B metal oxo complexes studied, MnO4(-) and MnO3(OCH3) appear to be the best catalysts for the exclusive formation of the dioxylate intermediate, MnO3(OCH3) being better so on both kinetic and thermodynamic grounds. The best epoxidation catalyst for the Mn complexes is MnO3Cl; the formation of the epoxide precursor will not result from the reaction of LMnO3 (L = O(-), Cp) with ethylene on any of the surfaces studied. The trends observed for the oxidation reactions of the Mn complexes with ethylene compare closely with those reported by us for the ReO3L and TcO3L (L = O(-), Cl, CH3, OCH3, Cp, NPH3) complexes, but there is far greater similarity between the Re and Tc complexes than between Mn and either of the other two. There does not appear to be any singlet-triplet or doublet-quartet spin-crossover in any of the pathways studied.
锰氧配合物 MnO3L(L = O(-)、Cl、CH3、OCH3、Cp、NPH3)氧化乙烯的机制在 B3LYP/LACVP*理论水平上的单重态、双重态、三重态和四重态势能表面上进行了探索,并对其进行了讨论和比较,与我们之前报道的锝和铼氧配合物的结果进行了比较,从而得出了这一重要类氧化催化剂反应中的基团趋势。在 MnO3L(L = O(-)、Cl(-)、CH3、OCH3、Cp、NPH3)与乙烯的反应中,发现二氧酯中间体沿协同[3 + 2]加成途径在单重态势能上的形成在动力学和热力学上有利于其通过两步过程通过金属氧杂环丁烷通过[2 + 2]加成形成。研究配体的单重态 PES 上二氧酯的形成和产物稳定性的活化势垒遵循以下顺序:NPH3 < Cl(-) < CH3O(-) < Cp < O(-) < CH3。在双重态 PES 上,发现配体形成二氧酯中间体的活化势垒顺序为:CH3O(-) < Cl(-) < Cp,而产物稳定性的顺序为:Cl(-) < CH3O(-) < Cp。对于研究的配体,三重态表面上二氧酯产物稳定性的顺序为:Cl(-) < CH3O(-) < Cp < CH3 < NPH3 < O(-),而四重态表面上的顺序为 O(-) < Cp < CH3 < NPH3 < Cl(-) < CH3O(-)。对于所有研究的配体,金属氧杂环丁烷中间体向二氧酯的重排不是可行的反应。在所研究的 VIIB 族金属氧配合物中,MnO4(-)和 MnO3(OCH3)似乎是形成二氧酯中间体的最佳催化剂,MnO3(OCH3)在动力学和热力学上都更好。对于 Mn 配合物,最好的环氧化催化剂是 MnO3Cl;在任何研究的表面上,LMnO3(L = O(-)、Cp)与乙烯的反应都不会导致环氧化物前体的形成。与我们之前报道的 ReO3L 和 TcO3L(L = O(-)、Cl、CH3、OCH3、Cp、NPH3)配合物相比,Mn 配合物与乙烯的氧化反应表现出的趋势非常相似,但 Re 和 Tc 配合物之间的相似性远远大于 Mn 和其他两个配合物之间的相似性。在所研究的任何途径中似乎都没有单重态-三重态或双重态-四重态自旋交叉。