Department of Bionano Technology, GBRI, Gachon Bionano Institute, Gachon University, Seongnam 460-701, South Korea.
Nanoscale. 2013 Oct 21;5(20):9793-805. doi: 10.1039/c3nr02333h.
Our recent studies on metal-organic nanohybrids based on alkylated graphene oxide (GO), reduced alkylated graphene oxide (RGO) and InP/ZnS core/shell quantum dots (QDs) are presented. The GO alkylated by octadecylamine (ODA) and the QD bearing a dodecane thiol (DDT) ligand are soluble in toluene. The nanocomposite alkylated-GO-QD (GOQD) is readily formed from the solution mixture. Treatment of the GOQD composite with hydrazine affords a reduced-alkylated-GO-QD (RGOQD) composite. The structure, morphology, photophysical and electrical properties of GOQDs and RGOQDs are studied. The micro-FTIR and Raman studies demonstrate evidence of the QD interaction with GO and RGO through facile intercalation of the alkyl chains. The field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) images of the GOQD composite show heaps of large QD aggregates piled underneath the GO sheet. Upon reduction to RGOQDs, the QDs become evenly distributed on the graphene bed and the size of the clusters significantly decreases. This also facilitates closer proximity of the QDs to the graphene domains by altering the optoelectronic properties of the RGOQDs. The X-ray photoelectron spectroscopy (XPS) results confirm QDs being retained in the composites, though a small elemental composition change takes place. The XPS and the fluorescence spectra show the presence of an In(Zn)P alloy while the X-ray diffraction (XRD) results show characteristics of the tetragonal indium. The photoluminescence (PL) quenching of QDs in GOQD and RGOQD films determined by the time correlated single photon counting (TCSPC) experiment demonstrates almost complete fluorescence quenching in RGOQDs. The conductance studies demonstrate the differences between GOQDs and RGOQDs. Investigation on the metal-oxide-semiconductor field-effect transistor (nMOSFET) characteristics shows the composite to exhibit p-type channel material properties. The RGOQD exhibits much superior electrical conductance as a channel material compared to the GOQD due to the close proximity of the QDs in the RGOQD to the graphene surface. The transfer characteristics, memory properties, and on/off ratios of the devices are determined. A mechanism has been proposed with reference to the Fermi energies of the composites estimated from the ultraviolet photoelectron spectroscopy (UPS) studies.
我们最近的研究集中在基于烷基化氧化石墨烯(GO)、还原烷基化氧化石墨烯(RGO)和 InP/ZnS 核/壳量子点(QD)的金属有机纳米杂化物上。十八胺(ODA)烷基化的 GO 和带有十二烷硫醇(DDT)配体的 QD 可溶于甲苯。纳米复合材料烷基化-GO-QD(GOQD)可从溶液混合物中轻易形成。用联氨处理 GOQD 复合材料可得到还原-烷基化-GO-QD(RGOQD)复合材料。GOQDs 和 RGOQDs 的结构、形态、光物理和电学性质都得到了研究。微傅里叶变换红外光谱(FTIR)和拉曼光谱研究表明,通过烷基链的简单插层,QD 与 GO 和 RGO 相互作用。GOQD 复合材料的场发射扫描电子显微镜(FESEM)和高分辨率透射电子显微镜(HRTEM)图像显示,GO 片下堆积着大量大 QD 聚集体。还原为 RGOQDs 后,QD 均匀分布在石墨烯床上,聚集体的尺寸显著减小。这也通过改变 RGOQDs 的光电特性,使 QD 更接近石墨烯畴。X 射线光电子能谱(XPS)结果证实 QD 保留在复合材料中,尽管元素组成略有变化。XPS 和荧光光谱表明存在 In(Zn)P 合金,而 X 射线衍射(XRD)结果表明具有四方铟的特征。通过时间相关单光子计数(TCSPC)实验测定的 GOQD 和 RGOQD 薄膜中 QD 的光致发光(PL)猝灭表明,RGOQD 中几乎完全猝灭了荧光。电导研究证明了 GOQDs 和 RGOQDs 之间的差异。对金属氧化物半导体场效应晶体管(nMOSFET)特性的研究表明,该复合材料表现出 p 型沟道材料特性。与 GOQD 相比,RGOQD 作为沟道材料具有更高的电导,这是由于 RGOQD 中的 QD 更接近石墨烯表面。对器件的转移特性、存储特性和导通/截止比进行了测定。提出了一种机制,参考紫外光电子能谱(UPS)研究估计的复合材料费米能级。