Proteomics Facility, College of Pharmacy, ‡the Howard Hughes Medical Institute, the Department of Molecular Genetics & Microbiology, and the Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, Texas 78712, United States.
J Proteome Res. 2013 Oct 4;12(10):4302-15. doi: 10.1021/pr400201d. Epub 2013 Sep 6.
Reactive oxygen species (ROS) play an important role in normal biological functions and pathological processes. ROS is one of the driving forces for oxidizing proteins, especially on cysteine thiols. The labile, transient, and dynamic nature of oxidative modifications poses enormous technical challenges for both accurate modification site determination and quantitation of cysteine thiols. The present study describes a mass spectrometry-based approach that allows effective discovery and quantification of irreversible cysteine modifications. The utilization of a long reverse phase column provides high-resolution chromatography to separate different forms of modified cysteine thiols from protein complexes or cell lysates. This Fourier transform mass spectrometry (FT-MS) approach enabled detection and quantitation of ataxia telangiectasia mutated (ATM) complex cysteine sulfoxidation states using Skyline MS1 filtering. When we applied the long column ultra high pressure liquid chromatography (UPLC)-MS/MS analysis, 61 and 44 peptides from cell lysates and cells were identified with cysteine modifications in response to in vitro and in vivo H2O2 oxidation, respectively. Long column ultra high pressure liquid chromatography pseudo selected reaction monitoring (UPLC-pSRM) was then developed to monitor the oxidative level of cysteine thiols in cell lysate under varying concentrations of H2O2 treatment. From UPLC-pSRM analysis, the dynamic conversion of sulfinic (S-O2H) and sulfonic acid (S-O3H) was observed within nucleoside diphosphate kinase (Nm23-H1) and heat shock 70 kDa protein 8 (Hsc70). These methods are suitable for proteome-wide studies, providing a highly sensitive, straightforward approach to identify proteins containing redox-sensitive cysteine thiols in biological systems.
活性氧(ROS)在正常的生物功能和病理过程中起着重要作用。ROS 是氧化蛋白质的驱动力之一,尤其是半胱氨酸硫醇。氧化修饰的不稳定、瞬态和动态性质给准确确定修饰位点和半胱氨酸硫醇的定量带来了巨大的技术挑战。本研究描述了一种基于质谱的方法,可有效发现和定量不可逆的半胱氨酸修饰。长反相柱的使用提供了高分辨率的色谱分离,可将不同形式的修饰半胱氨酸硫醇从蛋白质复合物或细胞裂解物中分离出来。这种傅里叶变换质谱(FT-MS)方法通过 Skyline MS1 过滤,实现了对共济失调毛细血管扩张突变(ATM)复合物半胱氨酸亚砜氧化状态的检测和定量。当我们应用长柱超高效液相色谱(UPLC)-MS/MS 分析时,分别从细胞裂解物和细胞中鉴定出 61 个和 44 个肽段,这些肽段在体外和体内 H2O2 氧化反应中均发生了半胱氨酸修饰。然后,开发了长柱超高效液相色谱伪选择反应监测(UPLC-pSRM)来监测细胞裂解物中半胱氨酸硫醇在不同 H2O2 处理浓度下的氧化水平。从 UPLC-pSRM 分析中,观察到核苷二磷酸激酶(Nm23-H1)和热休克 70 kDa 蛋白 8(Hsc70)中半胱氨酸磺酸(S-O2H)和磺酸(S-O3H)的动态转换。这些方法适用于蛋白质组学研究,提供了一种高度敏感、直接的方法,可用于鉴定生物系统中含有氧化还原敏感半胱氨酸硫醇的蛋白质。