Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.
J Chem Phys. 2013 Aug 21;139(7):074112. doi: 10.1063/1.4817942.
Given a set of canonical Kohn-Sham orbitals, orbital energies, and an external potential for a many-electron system, one can invert the Kohn-Sham equations in a single step to obtain the corresponding exchange-correlation potential, vXC(r). For orbitals and orbital energies that are solutions of the Kohn-Sham equations with a multiplicative vXC(r) this procedure recovers vXC(r) (in the basis set limit), but for eigenfunctions of a non-multiplicative one-electron operator it produces an orbital-averaged potential. In particular, substitution of Hartree-Fock orbitals and eigenvalues into the Kohn-Sham inversion formula is a fast way to compute the Slater potential. In the same way, we efficiently construct orbital-averaged exchange and correlation potentials for hybrid and kinetic-energy-density-dependent functionals. We also show how the Kohn-Sham inversion approach can be used to compute functional derivatives of explicit density functionals and to approximate functional derivatives of orbital-dependent functionals.
给定一组规范的 Kohn-Sham 轨道、轨道能量和多电子系统的外部势,人们可以通过单次迭代来反演 Kohn-Sham 方程,从而得到相应的交换相关势 vXC(r)。对于轨道和轨道能量,它们是 Kohn-Sham 方程的解,其中 vXC(r) 是乘法的,该过程可以在基组极限下恢复 vXC(r),但对于非乘法的单电子算符的本征函数,它会产生轨道平均势。特别是,将 Hartree-Fock 轨道和本征值代入 Kohn-Sham 反演公式是计算 Slater 势的一种快速方法。同样,我们可以高效地为混合和动能密度相关泛函构建轨道平均交换和相关势。我们还展示了如何使用 Kohn-Sham 反演方法来计算显式密度泛函的泛函导数,并近似轨道相关泛函的泛函导数。