Suppr超能文献

富含脱氧鸟苷的 T-寡核苷酸增强前列腺癌细胞的细胞毒性。

Enhanced cytotoxicity from deoxyguanosine-enriched T-oligo in prostate cancer cells.

机构信息

Cancer Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.

出版信息

Nucleic Acid Ther. 2013 Oct;23(5):311-21. doi: 10.1089/nat.2013.0420. Epub 2013 Aug 24.

Abstract

Prostate cancer represents approximately 10 percent of all cancer cases in men and accounts for more than a quarter of all cancer types. Advances in understanding the molecular mechanisms of prostate cancer progression, however, have not translated well to the clinic. Patients with metastatic and hormone-refractory disease have only palliative options for treatment, as chemotherapy seldom produces durable or complete responses, highlighting the need for novel therapeutic approaches. T-oligo, a single-stranded deoxyribonucleic acid with partial sequence homology to human telomeric DNA, has elicited cytostatic and/or cytotoxic effects in multiple cancer cell types. In contrast, normal primary cells of varying tissue types are resistant to cytotoxic actions of T-oligo, underscoring its potential utility as a novel targeted cancer therapeutic. Mechanistically, T-oligo is hypothesized to interfere with normal telomeric structure and form G-quadruplex structures, thereby inducing genomic stress in addition to aberrant upregulation of DNA damageresponse pathways. Here, we present data demonstrating the enhanced effectiveness of a deoxyguanosine-enriched sequence of T-oligo, termed (GGTT)4, which elicits robust cytotoxic effects in prostate cancer cells at lower concentrations than the most recent T-oligo sequence (5'-pGGT TAG GTG TAG GTT T 3') described to date and used for comparison in this study, while exerting no cytotoxic actions on nontransformed human prostate epithelial cells. Additionally, we provide evidence supporting the T-oligo induced activation of cJun N-terminal kinase (JNK) signaling in prostate cancer cells consistent with G-quadruplex formation, thereby significantly advancing the understanding of the T-oligo mechanism of action.

摘要

前列腺癌约占男性所有癌症病例的 10%,占所有癌症类型的四分之一以上。然而,对前列腺癌进展的分子机制的理解进展并没有很好地转化为临床实践。患有转移性和激素难治性疾病的患者只有姑息性治疗选择,因为化疗很少产生持久或完全的反应,这凸显了需要新的治疗方法。T-寡聚脱氧核苷酸是一种与人类端粒 DNA 部分序列同源的单链脱氧核糖核酸,在多种癌细胞类型中引起了细胞停滞和/或细胞毒性作用。相比之下,不同组织类型的正常原代细胞对 T-寡聚脱氧核苷酸的细胞毒性作用具有抗性,突出了其作为新型靶向癌症治疗药物的潜在用途。从机制上讲,T-寡聚脱氧核苷酸被假设为干扰正常端粒结构并形成 G-四链体结构,从而在异常上调 DNA 损伤反应途径的同时引起基因组应激。在这里,我们提供的数据表明,富含脱氧鸟苷的 T-寡聚脱氧核苷酸序列(称为(GGTT)4)的增强效果,在较低浓度下比迄今为止描述的最新 T-寡聚脱氧核苷酸序列(5'-pGGT TAG GTG TAG GTT T 3')更有效地诱导前列腺癌细胞的细胞毒性作用,并用于比较本研究中的细胞毒性作用,而对未转化的人前列腺上皮细胞没有细胞毒性作用。此外,我们提供的证据支持 T-寡聚脱氧核苷酸诱导的 cJun N-末端激酶(JNK)信号在前列腺癌细胞中的激活与 G-四链体形成一致,从而大大提高了对 T-寡聚脱氧核苷酸作用机制的理解。

相似文献

1
Enhanced cytotoxicity from deoxyguanosine-enriched T-oligo in prostate cancer cells.
Nucleic Acid Ther. 2013 Oct;23(5):311-21. doi: 10.1089/nat.2013.0420. Epub 2013 Aug 24.
2
Mechanism of Action of G-Quadruplex-Forming Oligonucleotide Homologous to the Telomere Overhang in Melanoma.
J Invest Dermatol. 2018 Apr;138(4):903-910. doi: 10.1016/j.jid.2017.11.021. Epub 2017 Dec 2.
3
4
Mechanism of T-oligo-induced cell cycle arrest in Mia-PaCa pancreatic cancer cells.
J Cell Physiol. 2012 Jun;227(6):2586-94. doi: 10.1002/jcp.22997.
5
T-oligo as an anticancer agent in colorectal cancer.
Biochem Biophys Res Commun. 2014 Apr 4;446(2):596-601. doi: 10.1016/j.bbrc.2014.03.013. Epub 2014 Mar 12.
6
Treating Cancer by Targeting Telomeres and Telomerase.
Antioxidants (Basel). 2017 Feb 19;6(1):15. doi: 10.3390/antiox6010015.
7
Telomerase inhibitors and 'T-oligo' as cancer therapeutics: contrasting molecular mechanisms of cytotoxicity.
Anticancer Drugs. 2008 Apr;19(4):329-38. doi: 10.1097/CAD.0b013e3282f5d4c2.
9
Specific targeting of telomeric multimeric G-quadruplexes by a new triaryl-substituted imidazole.
Nucleic Acids Res. 2017 Feb 28;45(4):1606-1618. doi: 10.1093/nar/gkw1195.
10
The effect of the TRF2 N-terminal and TRFH regions on telomeric G-quadruplex structures.
Nucleic Acids Res. 2009 Apr;37(5):1541-54. doi: 10.1093/nar/gkn1081. Epub 2009 Jan 12.

引用本文的文献

1
Brain Tumors: Development, Drug Resistance, and Sensitization - An Epigenetic Approach.
Epigenetics. 2023 Dec;18(1):2237761. doi: 10.1080/15592294.2023.2237761.
2
Proteins from the DNA Damage Response: Regulation, Dysfunction, and Anticancer Strategies.
Cancers (Basel). 2021 Jul 29;13(15):3819. doi: 10.3390/cancers13153819.
3
Telomeres and Telomere Length: A General Overview.
Cancers (Basel). 2020 Feb 28;12(3):558. doi: 10.3390/cancers12030558.
4
Effect of therapies-mediated modulation of telomere and/or telomerase on cancer cells radiosensitivity.
Oncotarget. 2018 Oct 9;9(79):35008-35025. doi: 10.18632/oncotarget.26150.
6
Treating Cancer by Targeting Telomeres and Telomerase.
Antioxidants (Basel). 2017 Feb 19;6(1):15. doi: 10.3390/antiox6010015.
8
Star-shaped tetraspermine enhances cellular uptake and cytotoxicity of T-oligo in prostate cancer cells.
Pharm Res. 2015 Jan;32(1):196-210. doi: 10.1007/s11095-014-1455-7. Epub 2014 Aug 5.
9
Novel delivery system for T-oligo using a nanocomplex formed with an alpha helical peptide for melanoma therapy.
Int J Nanomedicine. 2014;9:43-53. doi: 10.2147/IJN.S55133. Epub 2013 Dec 17.

本文引用的文献

1
Chemoprevention of prostate cancer: myths and realities.
J Am Board Fam Med. 2012 Jan-Feb;25(1):111-9. doi: 10.3122/jabfm.2012.01.110117.
2
Castration-resistant prostate cancer: many treatments, many options, many challenges ahead.
Cancer. 2012 May 15;118(10):2583-93. doi: 10.1002/cncr.26582. Epub 2011 Oct 28.
3
Mechanism of T-oligo-induced cell cycle arrest in Mia-PaCa pancreatic cancer cells.
J Cell Physiol. 2012 Jun;227(6):2586-94. doi: 10.1002/jcp.22997.
5
Emerging treatment options for patients with castration-resistant prostate cancer.
Prostate. 2012 Feb;72(3):338-49. doi: 10.1002/pros.21435. Epub 2011 Jul 11.
6
Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths.
CA Cancer J Clin. 2011 Jul-Aug;61(4):212-36. doi: 10.3322/caac.20121. Epub 2011 Jun 17.
7
T-oligo induces apoptosis in advanced prostate cancer cells.
Oligonucleotides. 2009 Sep;19(3):287-92. doi: 10.1089/oli.2009.0179.
9
Antitumor activity of G-quadruplex-interactive agent TMPyP4 in K562 leukemic cells.
Cancer Lett. 2008 Mar 18;261(2):226-34. doi: 10.1016/j.canlet.2007.11.017. Epub 2007 Dec 21.
10
Sirtuin 1 is required for antagonist-induced transcriptional repression of androgen-responsive genes by the androgen receptor.
Mol Endocrinol. 2007 Aug;21(8):1807-21. doi: 10.1210/me.2006-0467. Epub 2007 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验