Suppr超能文献

黑色素瘤细胞中精氨酸脱亚氨酶的抗性与代谢重编程、葡萄糖依赖性和谷氨酰胺成瘾有关。

Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction.

机构信息

Corresponding Author: Macus Tien Kuo, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Box 951, Houston, TX 77030.

出版信息

Mol Cancer Ther. 2013 Nov;12(11):2581-90. doi: 10.1158/1535-7163.MCT-13-0302. Epub 2013 Aug 26.

Abstract

Many malignant human tumors, including melanomas, are auxotrophic for arginine due to reduced expression of argininosuccinate synthetase-1 (ASS1), the rate-limiting enzyme for arginine biosynthesis. Pegylated arginine deiminase (ADI-PEG20), which degrades extracellular arginine, resulting in arginine deprivation, has shown favorable results in clinical trials for treating arginine-auxotrophic tumors. Drug resistance is the major obstacle for effective ADI-PEG20 usage. To elucidate mechanisms of resistance, we established several ADI-PEG20-resistant (ADI(R)) variants from A2058 and SK-Mel-2 melanoma cells. Compared with the parental lines, these ADI(R) variants showed the following characteristics: (i) all ADI(R) cell lines showed elevated ASS1 expression, resulting from the constitutive binding of the transcription factor c-Myc on the ASS1 promoter, suggesting that elevated ASS1 is the major mechanism of resistance; (ii) the ADI(R) cell lines exhibited enhanced AKT signaling and were preferentially sensitive to PI3K/AKT inhibitors, but reduced mTOR signaling, and were preferentially resistant to mTOR inhibitor; (iii) these variants showed enhanced expression of glucose transporter-1 and lactate dehydrogenase-A, reduced expression of pyruvate dehydrogenase, and elevated sensitivity to the glycolytic inhibitors 2-deoxy-glucose and 3-bromopyruvate, consistent with the enhanced glycolytic pathway (the Warburg effect); (iv) the resistant cells showed higher glutamine dehydrogenase and glutaminase expression and were preferentially vulnerable to glutamine inhibitors. We showed that c-Myc, not elevated ASS1 expression, is involved in upregulation of many of these enzymes because knockdown of c-Myc reduced their expression, whereas overexpressed ASS1 by transfection reduced their expression. This study identified multiple targets for overcoming ADI-PEG resistance in cancer chemotherapy using recombinant arginine-degrading enzymes.

摘要

许多恶性人类肿瘤,包括黑色素瘤,由于精氨琥珀酸合成酶-1(ASS1)的表达减少,是精氨酸的营养缺陷型,ASS1 是精氨酸生物合成的限速酶。聚乙二醇化精氨酸脱亚氨酶(ADI-PEG20)降解细胞外精氨酸,导致精氨酸缺乏,在治疗精氨酸营养缺陷型肿瘤的临床试验中取得了良好的效果。耐药性是有效使用 ADI-PEG20 的主要障碍。为了阐明耐药机制,我们从 A2058 和 SK-Mel-2 黑色素瘤细胞中建立了几种 ADI-PEG20 耐药(ADI(R))变体。与亲本系相比,这些 ADI(R)变体表现出以下特征:(i)所有 ADI(R)细胞系均表现出 ASS1 表达升高,这是由于转录因子 c-Myc 与 ASS1 启动子的组成性结合所致,表明升高的 ASS1 是主要的耐药机制;(ii)ADI(R)细胞系表现出增强的 AKT 信号传导,对 PI3K/AKT 抑制剂更敏感,但对 mTOR 信号传导降低,对 mTOR 抑制剂更耐药;(iii)这些变体表现出葡萄糖转运蛋白-1 和乳酸脱氢酶-A 的表达增强,丙酮酸脱氢酶的表达降低,以及对糖酵解抑制剂 2-脱氧葡萄糖和 3-溴丙酮酸的敏感性增加,与增强的糖酵解途径(Warburg 效应)一致;(iv)耐药细胞表现出更高的谷氨酰胺脱氢酶和谷氨酰胺酶表达,对谷氨酰胺抑制剂更敏感。我们表明,c-Myc 而不是升高的 ASS1 表达参与了许多这些酶的上调,因为 c-Myc 的敲低降低了它们的表达,而通过转染过表达 ASS1 降低了它们的表达。这项研究确定了使用重组精氨酸降解酶克服癌症化疗中 ADI-PEG 耐药性的多个靶点。

相似文献

1
Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction.
Mol Cancer Ther. 2013 Nov;12(11):2581-90. doi: 10.1158/1535-7163.MCT-13-0302. Epub 2013 Aug 26.
8
Systems level profiling of arginine starvation reveals MYC and ERK adaptive metabolic reprogramming.
Cell Death Dis. 2020 Aug 20;11(8):662. doi: 10.1038/s41419-020-02899-8.
9
A role for macrophages under cytokine control in mediating resistance to ADI-PEG20 (pegargiminase) in ASS1-deficient mesothelioma.
Pharmacol Rep. 2023 Jun;75(3):570-584. doi: 10.1007/s43440-023-00480-6. Epub 2023 Apr 3.

引用本文的文献

1
Arginine depletion potentiates standard-of-care chemo-immunotherapy in preclinical models of high-risk neuroblastoma.
J Exp Clin Cancer Res. 2025 Aug 14;44(1):239. doi: 10.1186/s13046-025-03502-8.
2
Metabolomics and proteomics reveal blocking argininosuccinate synthetase 1 alleviates colitis in mice.
Nat Commun. 2025 Jul 30;16(1):6983. doi: 10.1038/s41467-025-62217-8.
3
BCL-XL Protects ASS1-Deficient Cancers from Arginine Starvation-Induced Apoptosis.
Clin Cancer Res. 2025 Apr 1;31(7):1333-1345. doi: 10.1158/1078-0432.CCR-24-2548.
5
The roles of arginases and arginine in immunity.
Nat Rev Immunol. 2025 Apr;25(4):266-284. doi: 10.1038/s41577-024-01098-2. Epub 2024 Oct 17.
6
Cross-omics strategies and personalised options for lung cancer immunotherapy.
Front Immunol. 2024 Sep 25;15:1471409. doi: 10.3389/fimmu.2024.1471409. eCollection 2024.
7
A metabolic perspective on nitric oxide function in melanoma.
Biochim Biophys Acta Rev Cancer. 2024 Jan;1879(1):189038. doi: 10.1016/j.bbcan.2023.189038. Epub 2023 Dec 5.
8
Arginine Expedites Erastin-Induced Ferroptosis through Fumarate.
Int J Mol Sci. 2023 Sep 27;24(19):14595. doi: 10.3390/ijms241914595.
9
Inositol possesses antifibrotic activity and mitigates pulmonary fibrosis.
Respir Res. 2023 May 16;24(1):132. doi: 10.1186/s12931-023-02421-6.
10
SEdb 2.0: a comprehensive super-enhancer database of human and mouse.
Nucleic Acids Res. 2023 Jan 6;51(D1):D280-D290. doi: 10.1093/nar/gkac968.

本文引用的文献

1
Nutrient sensing, metabolism, and cell growth control.
Mol Cell. 2013 Feb 7;49(3):379-87. doi: 10.1016/j.molcel.2013.01.019.
3
Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma.
Invest New Drugs. 2013 Apr;31(2):425-34. doi: 10.1007/s10637-012-9862-2. Epub 2012 Aug 5.
4
AMP-activated protein kinase: new regulation, new roles?
Biochem J. 2012 Jul 1;445(1):11-27. doi: 10.1042/BJ20120546.
5
Dibenzophenanthridines as inhibitors of glutaminase C and cancer cell proliferation.
Mol Cancer Ther. 2012 Jun;11(6):1269-78. doi: 10.1158/1535-7163.MCT-11-0942. Epub 2012 Apr 11.
8
AMP-activated protein kinase phosphorylates cardiac troponin I and alters contractility of murine ventricular myocytes.
Circ Res. 2012 Apr 27;110(9):1192-201. doi: 10.1161/CIRCRESAHA.111.259952. Epub 2012 Mar 27.
10
Role of monocarboxylate transporters in human cancers: state of the art.
J Bioenerg Biomembr. 2012 Feb;44(1):127-39. doi: 10.1007/s10863-012-9428-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验