Dept of Health Sciences, Whitworth University, Spokane, WA.
J Sport Rehabil. 2014 May;23(2):107-22. doi: 10.1123/jsr.2013-0003. Epub 2013 Aug 27.
Muscle activation during aquatic treadmill (ATM) running has not been examined, despite similar investigations for other modes of aquatic locomotion and increased interest in ATM running.
The objectives of this study were to compare normalized (percentage of maximal voluntary contraction; %MVC), absolute duration (aDUR), and total (tACT) lower-extremity muscle activity during land treadmill (TM) and ATM running at the same speeds.
Exploratory, quasi-experimental, crossover design.
Athletic training facility.
12 healthy recreational runners (age = 25.8 ± 5 y, height = 178.4 ± 8.2 cm, mass = 71.5 ± 11.5 kg, running experience = 8.2 ± 5.3 y) volunteered for participation.
All participants performed TM and ATM running at 174.4, 201.2, and 228.0 m/min while surface electromyographic data were collected from the vastus medialis, rectus femoris, gastrocnemius, tibialis anterior, and biceps femoris.
For each muscle, a 2 × 3 repeated-measures ANOVA was used to analyze the main effects and environment-speed interaction (P ≤ .05) of each dependent variable: %MVC, aDUR, and tACT.
Compared with TM, ATM elicited significantly reduced %MVC (-44.0%) but increased aDUR (+213.1%) and tACT (+41.9%) in the vastus medialis, increased %MVC (+48.7%) and aDUR (+128.1%) in the rectus femoris during swing phase, reduced %MVC (-26.9%) and tACT (-40.1%) in the gastrocnemius, increased aDUR (+33.1%) and tACT (+35.7%) in the tibialis anterior, and increased aDUR (+41.3%) and tACT (+29.2%) in the biceps femoris. At faster running speeds, there were significant increases in tibialis anterior %MVC (+8.6-15.2%) and tACT (+12.7-17.0%) and rectus femoris %MVC (12.1-26.6%; swing phase).
No significant environment-speed interaction effects suggested that observed muscle-activity differences between ATM and TM were due to environmental variation, ie, buoyancy (presumed to decrease %MVC) and drag forces (presumed to increase aDUR and tACT) in the water.
尽管已经对其他模式的水中运动进行了类似的研究,并且对水上跑步机跑步的兴趣也有所增加,但肌肉在水上跑步机跑步中的激活情况尚未得到研究。
本研究的目的是比较陆地跑步机和水上跑步机以相同速度跑步时下肢肌肉的归一化(最大自主收缩的百分比;%MVC)、绝对持续时间(aDUR)和总时间(tACT)。
探索性、准实验、交叉设计。
运动训练设施。
12 名健康的休闲跑步者(年龄=25.8±5 岁,身高=178.4±8.2cm,体重=71.5±11.5kg,跑步经验=8.2±5.3 年)自愿参加了此次研究。
所有参与者以 174.4、201.2 和 228.0m/min 的速度在跑步机和水上跑步机上跑步,同时从股直肌、股外侧肌、腓肠肌、胫骨前肌和股二头肌中收集表面肌电图数据。
对于每个肌肉,使用 2×3 重复测量方差分析来分析主要效应和环境-速度交互作用(P≤0.05)的每个因变量:%MVC、aDUR 和 tACT。
与陆地跑步机相比,水上跑步机在股直肌中引起的归一化百分比显著降低(-44.0%),但绝对持续时间增加(+213.1%)和总时间增加(+41.9%);在摆动阶段,股直肌中的%MVC 增加(+48.7%),aDUR 增加(+128.1%);在腓肠肌中,%MVC 降低(-26.9%),tACT 降低(-40.1%);在胫骨前肌中,aDUR 增加(+33.1%),tACT 增加(+35.7%);在股二头肌中,aDUR 增加(+41.3%),tACT 增加(+29.2%)。在较快的跑步速度下,胫骨前肌的%MVC(+8.6-15.2%)和 tACT(+12.7-17.0%)以及股直肌的%MVC(+12.1-26.6%;摆动阶段)均显著增加。
由于环境变化(假定为降低%MVC)和水的阻力(假定为增加 aDUR 和 tACT),水上跑步机和陆地跑步机之间观察到的肌肉活动差异归因于环境变化,而不是环境-速度相互作用。