Suppr超能文献

在噪声性听力损失沙鼠中柔性电极插入的电生理后果

Electrophysiologic consequences of flexible electrode insertions in gerbils with noise-induced hearing loss.

作者信息

Choudhury Baishakhi, Adunka Oliver Franz, Awan Omar, Pike John Maxwell, Buchman Craig A, Fitzpatrick Douglas C

机构信息

Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill; Chapel Hill North Carolina, U.S.A.

出版信息

Otol Neurotol. 2014 Mar;35(3):519-25. doi: 10.1097/MAO.0b013e31829bdf2b.

Abstract

HYPOTHESIS

Flexible electrode interaction with intracochlear structures in a noise-damaged region of the cochlea can lead to measureable electrophysiologic changes.

BACKGROUND

An emerging goal in cochlear implantation is preservation of residual hearing subsequently allowing for combined electric and acoustic stimulation (EAS). However, residual hearing is at least partially lost in most patients as a result of electrode insertion. A gerbil model was used to examine changes to acoustically evoked cochlear potentials during simulated cochlear implantation.

METHODS

Gerbils were partially deafened by noise exposure to mimic residual hearing in human cochlear implant candidates. After 1 month, round window and intracochlear recordings during flexible electrode insertion were made in response to 1 kHz tone burst stimuli at 80 dB SPL. After the insertion, the cochleas were histologically examined for hair cell loss because of the noise exposure and trauma because of the electrode insertion.

RESULTS

Anatomic damage from the flexible electrode was not observable in most cases. However, insertions caused response declines that were, on average, greater than the controls, although some losses were similar to the controls. The CM was more sensitive than the CAP for detecting cochlear disturbance.

CONCLUSION

Because response reductions occurred in the absence of anatomic damage, disturbances in the fluid at the base appear to affect responses from the apex. The losses were less than in previous experiments where the basilar membrane was penetrated.

摘要

假设

在耳蜗噪声损伤区域,柔性电极与耳蜗内结构的相互作用可导致可测量的电生理变化。

背景

人工耳蜗植入的一个新目标是保留残余听力,从而实现电刺激和声刺激联合使用(EAS)。然而,在大多数患者中,由于电极插入,残余听力至少会部分丧失。使用沙鼠模型来研究模拟人工耳蜗植入过程中声诱发耳蜗电位的变化。

方法

通过噪声暴露使沙鼠部分失聪,以模拟人工耳蜗植入候选者的残余听力。1个月后,在插入柔性电极期间,针对80 dB SPL的1 kHz短音刺激,进行圆窗和耳蜗内记录。插入后,对耳蜗进行组织学检查,以确定因噪声暴露导致的毛细胞损失以及因电极插入造成的损伤。

结果

在大多数情况下,未观察到柔性电极造成的解剖损伤。然而,尽管有些插入造成的反应损失与对照组相似,但平均而言,插入导致的反应下降幅度大于对照组。在检测耳蜗干扰方面,CM比CAP更敏感。

结论

由于在没有解剖损伤的情况下出现反应降低,因此基底处液体的干扰似乎会影响顶端的反应。这些损失小于先前穿透基底膜的实验中的损失。

相似文献

1
Electrophysiologic consequences of flexible electrode insertions in gerbils with noise-induced hearing loss.
Otol Neurotol. 2014 Mar;35(3):519-25. doi: 10.1097/MAO.0b013e31829bdf2b.
2
Detection of intracochlear damage with cochlear implantation in a gerbil model of hearing loss.
Otol Neurotol. 2011 Oct;32(8):1370-8. doi: 10.1097/MAO.0b013e31822f09f2.
3
Electrophysiological properties of cochlear implantation in the gerbil using a flexible array.
Ear Hear. 2012 Jul-Aug;33(4):534-42. doi: 10.1097/AUD.0b013e3182498c28.
4
Intracochlear recordings of electrophysiological parameters indicating cochlear damage.
Otol Neurotol. 2010 Oct;31(8):1233-41. doi: 10.1097/MAO.0b013e3181f1ffdf.
6
Delayed low frequency hearing loss caused by cochlear implantation interventions via the round window but not cochleostomy.
Hear Res. 2016 Mar;333:49-57. doi: 10.1016/j.heares.2015.12.012. Epub 2015 Dec 29.
7
Real-Time Intracochlear Electrocochleography Obtained Directly Through a Cochlear Implant.
Otol Neurotol. 2017 Jul;38(6):e107-e113. doi: 10.1097/MAO.0000000000001425.
9
Intracochlear Electrocochleography: Response Patterns During Cochlear Implantation and Hearing Preservation.
Ear Hear. 2019 Jul/Aug;40(4):833-848. doi: 10.1097/AUD.0000000000000659.
10
Round window membrane insertion with perimodiolar cochlear implant electrodes.
Otol Neurotol. 2013 Aug;34(6):1027-32. doi: 10.1097/MAO.0b013e318280da2a.

引用本文的文献

2
Acute effects of cochleostomy and electrode-array insertion on compound action potentials in normal-hearing guinea pigs.
Front Neurosci. 2023 Feb 8;17:978230. doi: 10.3389/fnins.2023.978230. eCollection 2023.
3
Cochlear implants: Causes, effects and mitigation strategies for the foreign body response and inflammation.
Hear Res. 2022 Sep 1;422:108536. doi: 10.1016/j.heares.2022.108536. Epub 2022 May 24.
4
Cochlear implantation in an animal model documents cochlear damage at the tip of the implant.
Braz J Otorhinolaryngol. 2022 Jul-Aug;88(4):546-555. doi: 10.1016/j.bjorl.2020.07.017. Epub 2020 Sep 20.
5
Assessment of Cochlear Function during Cochlear Implantation by Extra- and Intracochlear Electrocochleography.
Front Neurosci. 2018 Jan 26;12:18. doi: 10.3389/fnins.2018.00018. eCollection 2018.
6
The Compound Action Potential in Subjects Receiving a Cochlear Implant.
Otol Neurotol. 2016 Dec;37(10):1654-1661. doi: 10.1097/MAO.0000000000001224.
7
Effect of a liposomal hyaluronic acid gel loaded with dexamethasone in a guinea pig model after manual or motorized cochlear implantation.
Eur Arch Otorhinolaryngol. 2017 Feb;274(2):729-736. doi: 10.1007/s00405-016-4331-8. Epub 2016 Oct 6.
9
Distinguishing hair cell from neural potentials recorded at the round window.
J Neurophysiol. 2014 Feb;111(3):580-93. doi: 10.1152/jn.00446.2013. Epub 2013 Oct 16.

本文引用的文献

1
Intraoperative round window recordings to acoustic stimuli from cochlear implant patients.
Otol Neurotol. 2012 Dec;33(9):1507-15. doi: 10.1097/MAO.0b013e31826dbc80.
2
Electrophysiological properties of cochlear implantation in the gerbil using a flexible array.
Ear Hear. 2012 Jul-Aug;33(4):534-42. doi: 10.1097/AUD.0b013e3182498c28.
3
Intraoperative monitoring using cochlear microphonics in cochlear implant patients with residual hearing.
Otol Neurotol. 2012 Apr;33(3):348-54. doi: 10.1097/MAO.0b013e318248ea86.
4
Electrocochleography during cochlear implantation for hearing preservation.
Otolaryngol Head Neck Surg. 2012 May;146(5):774-81. doi: 10.1177/0194599811435895. Epub 2012 Jan 30.
5
Detection of intracochlear damage with cochlear implantation in a gerbil model of hearing loss.
Otol Neurotol. 2011 Oct;32(8):1370-8. doi: 10.1097/MAO.0b013e31822f09f2.
6
A gerbil model of sloping sensorineural hearing loss.
Otol Neurotol. 2011 Jun;32(4):544-52. doi: 10.1097/MAO.0b013e31821343f5.
8
Intracochlear recordings of electrophysiological parameters indicating cochlear damage.
Otol Neurotol. 2010 Oct;31(8):1233-41. doi: 10.1097/MAO.0b013e3181f1ffdf.
9
Flexible cochlear microendoscopy in the gerbil.
Laryngoscope. 2010 Aug;120(8):1619-24. doi: 10.1002/lary.20979.
10
Hybrid 10 clinical trial: preliminary results.
Audiol Neurootol. 2009;14 Suppl 1(Suppl 1):32-8. doi: 10.1159/000206493. Epub 2009 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验