Suppr超能文献

使用基于模糊非共价约束的网络拓扑集合对生物大分子柔性进行高效稳健的分析。

Efficient and robust analysis of biomacromolecular flexibility using ensembles of network topologies based on fuzzy noncovalent constraints.

机构信息

Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany.

出版信息

Structure. 2013 Oct 8;21(10):1725-34. doi: 10.1016/j.str.2013.07.012. Epub 2013 Aug 29.

Abstract

We describe an approach (ENT(FNC)) for performing rigidity analyses of biomacromolecules on ensembles of network topologies (ENT) generated from a single input structure. The ENT is based on fuzzy noncovalent constraints, which considers thermal fluctuations of biomacromolecules without actually sampling conformations. Definitions for fuzzy noncovalent constraints were derived from persistency data from molecular dynamics (MD) simulations. A very good agreement between local flexibility and rigidity characteristics from ENT(FNC) and MD simulations-generated ensembles is found. Regarding global characteristics, convincing results were obtained when relative thermostabilities of citrate synthase and lipase A structures were computed. The ENT(FNC) approach significantly improves the robustness of rigidity analyses, is highly efficient, and does not require a protein-specific parameterization. Its low computational demand makes it especially valuable for the analysis of large data sets, e.g., for data-driven protein engineering.

摘要

我们描述了一种方法(ENT(FNC)),用于对从单个输入结构生成的网络拓扑(ENT)集合上的生物大分子进行刚性分析。ENT 基于模糊非共价约束,它考虑了生物大分子的热波动,而无需实际采样构象。模糊非共价约束的定义源自分子动力学 (MD) 模拟中的持久性数据。在 ENT(FNC) 和 MD 模拟生成的集合之间,局部灵活性和刚性特征之间存在非常好的一致性。关于全局特征,当计算柠檬酸合酶和脂肪酶 A 结构的相对热稳定性时,得到了令人信服的结果。ENT(FNC) 方法显著提高了刚性分析的稳健性,效率非常高,并且不需要针对蛋白质的参数化。其低计算需求使其特别适用于大型数据集的分析,例如,用于数据驱动的蛋白质工程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验