School of Physics and State Key laboratory of crystal materials, Shandong University, Jinan, Shandong 250100, China.
Phys Chem Chem Phys. 2013 Oct 21;15(39):16853-63. doi: 10.1039/c3cp52619d. Epub 2013 Sep 2.
Using first-principle calculations, we show that germanene can attach on Ag(111) surface forming germanene/Ag superstructures via electrostatic interactions. In all the optimized superstructures, we found a kind of epitaxially grown germanene is similar to the isolated low-buckled germanene. The adsorption energy of germanene on Ag(111) surface is about -464 meV to -428 meV per Ge atom, close to that of silicene on Ag(111) surface. Germanene on Ag(111) is a continuous layer and the p-d hybridization between Ag and Ge is revealed. These indicate Ag(111) surface is a good substrate for stabilizing germanene. The band structures of germanene are submerged in electronic states of metallic Ag substrate. To preserve the excellent electronic structures of germanene, we also considered another substrate hexagonal boron nitride (h-BN). We show that germanene can stably attach on h-BN substrate via Van der Waals (vdW) interactions, forming germanene/BN Moiré superstructures. At equilibrium state, a small band gap of about 50 meV is opened up in the Dirac point of germanene, whose value is insensitive to the rotation angle and the sliding between the two lattices, but can be effectively tuned by changing the interlayer distance. In these superstructures, the high carrier mobility of germanene is well preserved. These imply that h-BN can act as an ideal substrate material for germanene to achieve specific applications in nanoscale electronic devices.
利用第一性原理计算,我们表明锗烯可以通过静电相互作用附着在 Ag(111) 表面上,形成锗烯/Ag 超结构。在所有优化的超结构中,我们发现了一种类似于孤立低弯曲锗烯的外延生长锗烯。锗烯在 Ag(111) 表面上的吸附能约为每 Ge 原子-464 meV 至-428 meV,接近硅烯在 Ag(111) 表面上的吸附能。Ag(111)表面上的锗烯是一个连续的层,并且揭示了 Ag 和 Ge 之间的 p-d 杂化。这些表明 Ag(111)表面是稳定锗烯的理想衬底。锗烯的能带结构被金属 Ag 衬底的电子态淹没。为了保持锗烯优异的电子结构,我们还考虑了另一种衬底六方氮化硼(h-BN)。我们表明,锗烯可以通过范德华(vdW)相互作用稳定地附着在 h-BN 衬底上,形成锗烯/BN 莫尔超结构。在平衡状态下,在锗烯的狄拉克点处打开了一个约 50 meV 的小带隙,其值对两个晶格之间的旋转角度和滑动不敏感,但可以通过改变层间距离来有效调节。在这些超结构中,锗烯的高载流子迁移率得到了很好的保持。这意味着 h-BN 可以作为锗烯的理想衬底材料,实现纳米尺度电子器件中的特定应用。