Suppr超能文献

基于层次贝叶斯模型的蛋白质选择压力的空间分布。

Spatial distribution of selection pressure on a protein based on the hierarchical Bayesian model.

机构信息

Center of Medical Information Science, Kochi University, Kochi, Japan.

出版信息

Mol Biol Evol. 2013 Dec;30(12):2714-22. doi: 10.1093/molbev/mst151. Epub 2013 Sep 2.

Abstract

Proteins adapt to novel environments and/or gain function by substitution in amino acid sequences. Therefore, mutations in protein-coding genes are subject to selection pressure. The strength and character of selection pressure may vary among the regions of the protein. Thus, the spatial distribution of selection pressure provides information on the adaptive evolution of the protein. We developed a hierarchical Bayesian model that detects the spatial distribution of selection pressure on a protein. We expressed selection pressure by the substitution rate ratio of nonsynonymous to synonymous substitutions in the DNA sequence. The Potts model describes the prior distribution of spatial aggregation of selection pressure. The hyperparameters that define the strength and range of spatial clustering are estimated by maximizing the marginal likelihood. Because our prior distribution is un-normalized, we calculated the log marginal likelihood by "thermodynamic integration." We applied the method to historical data on the influenza hemagglutinin protein, comparing the estimated spatial distribution of the substitution rate ratio with that of antigenic sites A-E. The amino acid residues with higher substitution rate ratios, representing diversifying selection pressure, overlapped the antigenic sites.

摘要

蛋白质通过氨基酸序列的替换来适应新的环境和/或获得功能。因此,蛋白质编码基因中的突变受到选择压力的影响。选择压力的强度和特征可能在蛋白质的不同区域有所不同。因此,选择压力的空间分布提供了关于蛋白质适应性进化的信息。我们开发了一种层次贝叶斯模型,可以检测蛋白质上选择压力的空间分布。我们通过 DNA 序列中非同义替换与同义替换的替换率比值来表示选择压力。Potts 模型描述了选择压力空间聚集的先验分布。通过最大化边缘似然来估计定义空间聚类强度和范围的超参数。由于我们的先验分布未归一化,因此我们通过“热力学积分”计算了对数边缘似然。我们将该方法应用于流感血凝素蛋白的历史数据,将估计的替换率比值的空间分布与抗原位点 A-E 的空间分布进行比较。代表多样化选择压力的氨基酸残基与抗原位点重叠。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验