Advanced Technology Research Laboratories, Nippon Steel and Sumitomo Metal Corporation , 20-1 Shintomi, Futtsu, Chiba 293-8511, Japan.
J Phys Chem A. 2013 Sep 26;117(38):9274-81. doi: 10.1021/jp406636a. Epub 2013 Sep 17.
Ab initio molecular orbital calculations combined with the polarizable continuum model (PCM) formalism have been carried out for a comprehensive understanding of the mechanism of carbon dioxide (CO2) absorption by aqueous amine solutions. CO2 is captured by amines to generate carbamates and bicarbonate. We have examined the direct interconversion pathways of these two species (collectively represented by a reversible hydrolysis of carbamate) with the prototypical amine, monoethanolamine (MEA). We evaluate both a concerted and a stepwise mechanism for the neutral hydrolysis of MEA carbamate. Large activation energies (ca. 36 kcal/mol) and lack of increase in catalytic efficiency with the inclusion of additional water molecules are predicted in both the mechanisms. We also examined the mechanism of alkaline hydrolysis of MEA carbamate at high concentrations of amine (high pH). The addition of OH(-) ion to carbamate anion was theoretically not allowed due to the reduction in the nucleophilicity of the former as a result of microsolvation. We propose an alternative pathway for hydrolysis: a proton transfer from protonated MEA to carbamate to generate the carbamic acid that initially undergoes a nucleophilic addition of OH(-) and subsequent low-barrier reactions leading to the formation of bicarbonate and free MEA. On the basis of the calculated activation energies, this pathway would be the most efficient route for the direct interconversion of carbamate and bicarbonate without the intermediacy of the free CO2, while the actual contributions will be dependent on the concentrations of protonated MEA and OH(-) ions.
采用从头算分子轨道计算结合极化连续模型(PCM)理论,对二氧化碳(CO2)在水合胺溶液中的吸收机制进行了全面的理解。胺将 CO2 捕获生成氨基甲酸盐和碳酸氢盐。我们研究了这两种物质(以氨基甲酸盐的可逆水解共同表示)与原型胺单乙醇胺(MEA)的直接转化途径。我们评估了 MEA 氨基甲酸盐中性水解的协同和分步机制。在这两种机制中,都预测了较大的活化能(约 36 kcal/mol),并且随着额外水分子的加入,催化效率没有增加。我们还研究了高浓度胺(高 pH 值)条件下 MEA 氨基甲酸盐的碱性水解机制。由于微溶剂化导致前者亲核性降低,因此理论上 OH(-)离子不能加到氨基甲酸盐阴离子上。我们提出了一种水解的替代途径:质子从质子化的 MEA 转移到氨基甲酸盐,生成最初经历 OH(-)亲核加成和随后低势垒反应的氨基甲酸,生成碳酸氢盐和游离的 MEA。基于计算出的活化能,这条途径将是氨基甲酸盐和碳酸氢盐之间直接转化的最有效途径,而无需 CO2 中间体,而实际贡献将取决于质子化 MEA 和 OH(-)离子的浓度。